2018

M.Sc.

1st Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-105

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Classical Mechanics and Non-linear Dynamics

1. Answer any four questions:

4×2

- (a) State basic postulates of special theory of relativity.
- (b) Prove that, if the transformation does not depend explicitly on time then the Hamiltonian represents the total energy.
- (c) Prove that the work done by the force in displacing a particle from the position P_1 to P_2 is equal to the difference between the potential energies of the particle at those two positions.

- (d) Suppose that a rigid body is rotating about a fixed point. Prove that the kinetic energy is conserved throughout the motion.
- (e) Is Poisson bracket commutative? Justify your answer.
- (f) Write a brief note on phase portrait.
- (g) What do you mean by canonical transformation ? Explain.
- (h) Define eigen frequencies and normal modes of small oscillation of a dynamical system.
- 2. Answer any four questions :

4×4

(a) Construct the Routhian for the two-body problem, for which

$$L = \frac{\mu}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) - V(r).$$

- (b) A double pendulum consisting of two massess m₁ and m₂ oscillates in a vertical plane through small angles. m₁ is suspended from a fixed point by light inextensible string of length l₁ and m₂ is suspended from m₁ by a similar string of length l₂.
 State the number of degrees of freedom of the system and find the equations of motion by using Lagrange's formulation.
- (c) Prove that the Poisson bracket of two constants of motion is itself a constant even though the constants depend on time explicitly.

(d) Consider the following nonlinear dynamical system,

$$\dot{x} = x^2y - x^5, \ \dot{y} = -y + x^2$$

Study the stability at the origin.

- (e) Prove that the phase volume is invarient under canonical transformation.
- (f) State and prove Jacobi identity related to Poisson bracket.
- (g) State Hamilton-Jacobi function. Write its significance.
- (h) Show that the transformation

$$Q = \log(1 + \sqrt{q}\cos p), P = 2\sqrt{q}(1 + \sqrt{q}\cos p)\sin p$$

is canonical. Find the generating function G(q, Q).

3. Answer any two questions:

2×8

(a) (i) A body moves about a point Q under no forces. The principal moments of inertia at O being 3A, 5A and 6A. Initially, the angular velocity has components $w_1 = n$, $w_2 = 0$, $w_3 = n$ about the corresponding principal axes. Show that at any time t,

$$w_2 = \frac{3n}{\sqrt{5}} \tan h \left(\frac{nt}{\sqrt{5}} \right).$$

and that the body ultimately rotates about the mean axis.

- (ii) If a transformation from q, p to Q, P be canonical then bilinear form $\sum_i (\delta p_i dq_i \delta q_i dp_i)$ remains invariant.
- (b) (i) Let $J = \int_{x_0}^{x_1} F(y, y', x) dx$, where y is an unknown function to be depended on x. Derive a differential equation to find the curve y = y(x) which will