2018

M.Sc.

1st Semester Examination

MATHEMATICS

PAPER-MTM-102

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Complex Analysis

1. Answer any four questions:

4x2

(a) Sketch $S = \left\{ z : \left| \frac{z+1}{z-1} \right| < 1 \right\}$ and decide whether it is domain.

- (b) Find the length of the curve $C: z(t) = (1-i)t^2, -1 \le t \le 1$.
- (c) Find all the points of discontinuity of the function

$$f(z) = \frac{\tanh z}{z^2 + 1}.$$

(d) Is it possible to evaluate the integral $\int_C f(z)dz$ where

$$f(z) = \frac{5z+2}{z(z-2)}$$
 and $C: |z| = 1$ using the single residue

of
$$\frac{1}{z^2} f\left(\frac{1}{z}\right)$$
 at $z = 0$? Justify.

- (e) Write the Cauchy Integral formula for nth order derivative and then based on this discuss the existence of all order derivatives of a complex function.
- (f) Find Res f(z) at z = 0 where $f(z) = \frac{z-3}{z^2} \sin \frac{1}{1-z}$.
- (g) State Rouche's theorem.
- (h) Define conformal mapping.

2. Answer any four questions:

4×4

(a) Suppose that f(z) = u(x, y) + iv(x, y) and that f'(z) exists at a point $z_0 = x_0 + iy_0$. Then prove that the first order partial derivatives of u and v must exist at (x_0, y_0) and they must satisfy the Cauchy Riemann equations:

$$u_x = v_y$$
; $u_y = -v_x$ at (x_0, y_0) .

Also, prove. $f'(z_0) = u_x + iv_x$ at (x_0, y_0) .

(b) Evaluate the integral $\int_C \frac{f(z) + f(-1/z)}{(z-i)^2} dz$ where C is

the simple closed contour $|z-i|=\frac{1}{2}$, in counter clock-

wise sense and f(z) is analytic in $|z-i| \le 1$.

(c) If a function f(z) is continuous on a contour C of length l and if M be the upper bound of |f(z)| on C, prove that

$$\left|\int_{c} f(z) dz\right| \leq MI.$$

(d) Show that

$$w = \frac{5 - 4z}{4z - 2}$$

transform |z| = 1 into a circle in the z-plane and hence find the centre and radius of the circle.

- (e) Determine the number of roots, counting multiplicities, of the equation $2z^5 6z^2 + z + 1 = 0$ in the annulus $1 \le z \le 2$.
- (f) Use the residues to evaluate

$$\int_0^{2\pi} \frac{d\theta}{5 + 4\sin\theta}.$$

- (g) If f(z) is an entire function and $|f(z)| \le M|z|^m$, where M is a strictly positive real and m is a positive integer, then show that f(z) is a polynomial of degree less than or equal to m.
- (h) State and prove the Jordan's Lemma.
- 3. Answer any two questions:

2×8

(a) (i) Classify the singularity z = 0 of the function

$$f(z) = \frac{\cosh(z^3) - 1}{z^7}$$

in terms of removable, pole and essential singularity. In case z = 0 is a pole, specify the order of the pole.

(ii) Evaluate the residue of the function

$$f(z) = \frac{\cosh(z^3) - 1}{z^7} \text{ at } z = 0.$$

(iii) Using Part-(ii), evaluate

$$\int_C \frac{\cosh(z^3) - 1}{z^7} \, dz,$$

where C: |z| = 1 taken in the positive direction.

4+2+2

(b) (i) Write the Taylor's and Laurent's series representation of a function f(z) by stating

necessary condition/s for each of the series. Hence discuss under what condition/s the Laurent's series of the said function reduces to Taylor's series of the said function.

(ii) Find the Laurent series expansion of

$$f(z)=\frac{z}{(z-1)(z-3)}$$

in the domain 0 < |z| < 1. Finally decide whether the resulting series is Laurent's or Taylor's. 5+3

(c) Let w = f(z) = u(x, y) + iv(x, y) be defined in an open region R such that the partial derivatives of u, v are continuous

in R and $\frac{\partial(u, v)}{\partial(x, y)} \neq 0$ in R. If the mapping w = f(z) is

conformal in R, then show that f(z) is holomerphic in R and $f'(z) \neq 0$ in R.

(d) (i) Using the method of residues, evaluate

$$\int_0^\infty \frac{x^{-a}}{x+1} \, dx \, (0 < a < 1).$$

(ii) Let $w = f(z) = \frac{az+b}{cz+d}$ is a bilinear transformation.

Then find the inverse of this transformation. Is it a again bilinear? Also find the determinant of both the transformations.

6+2

[Internal Assessment — 10 Marks]