2018

M.Sc.

1st Semester Examination

MATHEMATICS

PAPER-MTM-101

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Real Analysis

1. Answer any four questions:

 4×2

- (a) If E is a measurable subset of [a, b]show that $\int_E f dx = 4m(E)$ when f(x) = 4.
- (b) Is the following a connected subset of \mathbb{R}^2 : $(x, y) \in \mathbb{R}^2 : x^2y^2 = 1$? Justify your answer.

- (c) Is the following a compact subset of \mathbb{R}^2 $\{(x, y) \in \mathbb{R}^2 : x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1\} ? \text{ Justify your answer.}$
- (d) Discuss the continuity of a function from a discrete matric space into a metric space.
- (e) Evaluate: $\int_{-1}^{1} x^2 d(x^2)$.
- (f) Define a measurable function.
- (g) Define Borel set.
- (h) Show that the set of all natural numbers is a null subset of \mathbb{R} .
- 2. Answer any four questions:

4×4

(a) Show that the following function is not of bounded variation though continuous

$$f(x) = x \cos \frac{\pi}{x} \quad \text{if } 0 < x \le 1$$
$$= 0 \quad \text{if } x = 0$$

(b) Let a bounded measurable function $f: E \to R$ satisfy a < f(x) < b for all $x \in E$. Prove that

$$am(E) \leq \int_{E} f dx \leq bm(E)$$
.

- (c) State and prove the Monotone Convergence theorem.
- (d) If f is continuous on [a, b] and a is monotonically increasing on [a, b] show that $f \in R(a)$ on [a, b].
- (e) Prove that a compact metrix space is separable.
- (f) Let $f_n: X \to \mathbb{R}^*$ be measurable for n = 1, 2, 3, ... Then show that $\liminf_{n \to \infty} f_n$ and $\inf_{n \to \infty} f_n$ are measurable functions on X.
- (g) If $f_n: X \to [0, \infty]$ is measurable for n = 1, 2, 3, ..., and $f(x) = \sum_{n=1}^{\infty} f_n(x), x \in X, \text{ then show that}$

$$\int f \, d\mu = \sum_{n=1}^{\infty} \int f_n \, d\mu \, .$$

- (h) Prove that a continuous image of a connected metric space is connected.
- 3. Answer any two questions:

2×8

(a) Define a function of bounded variation. Prove that a function f(x) is of bounded variation on [a, b] if and only if it can be expressed as difference of two monotone increasing functions.

- (b) (i) Let $f(x) = \frac{1}{x^p}$ if $0 < x \le 1$ and f(0) = 0. Find necessary and sufficient condition on p such that $f \in L^1[0, 1]$. Compute $\int_0^1 f(x)\lambda(x)$ in that case.
 - (ii) Evaluate the following:

$$\int_{-1}^{3} 2\cos x \, d(2x + [x]) \,. \qquad 6+2$$

- (c) (i) Show that if a metric space X is compact then it is closed and bounded.
 - (ii) Show that every path connected metric space is connected. Give an example to show that the converse is not true.
- (d) (i) Let $f: X \to [0, \infty]$ be measurable and $\phi(E) = \int_E f d\mu$ for every measurable set E in X. Show that ϕ is a measurable function and $\int g d\phi = \int gf d\mu$ for every measurable function g on X with range in $[0, \infty]$.
 - (ii) Show that the Cantor set is a null set. 5+3

[Internal Assessment - 10 Marks]