2018

M.Sc

2nd Semester Examination

ELECTRONICS

PAPER-ELC-202

Subject Code-27

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their

own words as far as practicable.

Illustrate the answers wherever necessary.

(Semiconductor Device)

Answer Q. No. 1 and any three from the rest.

- 1. (a) What do you mean by early effect in a transistor? What is Punch-through?
 - (b) Why activation energy method is preferred to determine the barrier height of a Schottky diode?

- (c) Draw the equivalent circuit model of a MESFET and indicate various extrinsic and intrinsic parameters.
- (d) Draw the energy band diagram of a M-I-S structure having P-type semiconductor for a condition $\varphi_s > 0$.
- (d) Prove that Fermi level remains constant along the P-N junction when no electric field is applied. 5×2
- 2. (a) Derive the Shockley equation showing the current-voltage relationship of a P-N junction diode.
 - (b) Compare the oprational characteristics between Fastrecovery diode and charge-storage diode. 8+2
- 3. (a) Prove that the barrier lowering due to Schottky effect is $\Delta \phi = \sqrt{\frac{9\epsilon}{4\pi\epsilon_0}}$ where the symbols have their usual meaning.
 - (b) The expression of barrier height for a metalsemiconductor contact is given as

$$\phi_{Bn} = c_2(\phi_m - \chi) + (1 - c_2) \left(\frac{Eg}{9} - \phi_0\right) - \Delta\phi$$

where the symbols have their usual meaning prove that ϕ_{Bn} is independent of metal work function when $D_s \to \infty$.

(c) If a thin Layer of semiconductor having a doping concentration n_1 is introduced at the semiconductor surface, show that the reduction of barrier height

$$\Delta\phi = \frac{9}{\varepsilon_s}\sqrt{\frac{h_1a}{4\pi}}$$

where 'a' is the thickness of the semiconductor having doping concentration n_1 .

4+2+4

- 4. (a) Prove that in a MESFET, the drain conductive in linear region is equal to the transconductance in saturation region.
 - (b) For a MESFET operated under electron velocity saturation prove that

$$gm/cgs = U_s z 7+3$$

- 5. (a) Derive the expression of drain current of a MOSFET considering gradual channel approximation.
 - (b) Draw the LFCV and HFCV plots of a M-I-S diode and explain its nature of variation. (2+3+1)+2+2

- 6. (a) Write down the Ebers Moll equations for emitter, base and collector currents of a transistor and hence draw the Ebers-Moll-model.
 - (b) Draw and discuss on the Gummel-Poon model of a Transistor.
 - (c) Discuss various precondition required for a BJT for its high power and high frequency operations. (3+2)+3+2

[Internal Assessment — 10 Marks]