M.Sc. 3rd Semester Examination, 2018 ELECTRONICS

(Advance Electromagnetic Theory and Radiating Systems)

PAPER - ELC-301

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any three questions from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer any five questions:

 2×5

(a) Why a waveguide behaves like a high pass filter?

(Turn Over)

- (b) A transmission line is terminated with matched load. Find its VSWR and RL in dB.
- (c) What are lumped parameters and distributed parameters?
- (d) Two lossless cables of characteristic impedance 50Ω and 80Ω are to be joined for reflection less transmission. Find suitable matching transformer.
- (e) Draw the equivalent circuit of two parallel wire transmission line and show its different primary constants.
- (f) A 50 Ω loss less transmission line has the velocity of voltage wave 2 × 10⁸ m/sec. Find the length of the line to use it as series resonant circuit at 1 GHz when
 - (i) line is open circuited
 - (ii) line is short circuited.
- 2. (a) Find an expression for the input impedance of a two parallel wire loss less transmission line of chact impedance z_0 and terminated by an impedance z_L .

- (b) Show that:
 - (i) the input impedance repeats at every $\lambda/2$ distance.
 - (ii) normalised impedance inverts at $\lambda/4$.
 - (iii) the impedance at any point is equal to chact impedance when it is terminated with the chact impedance. 4+2+2+2
- 3. (a) Find expressions for propagation const, cut-off frequency and phase velocity of propagation inside a rectangular waveguide for TM mode of propagation.
 - (b) What are dominant mode and degenerate mode of propagation?
 - (c) What are the dominant modes for TE and TM mode of propagation inside a rectangular waveguide?

 6+2+2
- 4. (a) Find total power radiated by Hertz-dipole, given avg power radiated by the dipole is

$$pav = \frac{1}{2} \left(\frac{i_0 dl \sin \theta}{4\pi r} \right) \frac{\beta^3}{w \in \hat{r}}.$$

- (b) Find the radiation resistance of Hertz dipole.
- (c) Define:
 - (i) Half power beam width
 - (ii) Side lobe level
 - (iii) Directivity
 - (iv) Antenna gain.

$$4 + 2 + 4$$

5. A 100 Ω transmission line is terminated by load impedance of 40 + j70 as shown in figure below:

$$\begin{array}{c}
l = 0.4\lambda \\
z_0 = 100 \Omega
\end{array}$$

$$40 + j70$$

The line is 0-4 λ long. Use the Smith chart to find the following:

- (i) Input impedance of the line
- (ii) Load admittance
- (iii) The SWR on the line
- (iv) Reflection co-efficient at load

- (v) RL in dB
- (vi) Position of first voltage maxima and minima. $1 + 1 + (4 \times 2)$
- 6. (a) Find expressions for attenuation const (α) propagation const (β) and phase velocity (ν_p) for propagation of wave inside good dielectric and good conductor.
 - (b) What is dissipation factor?

8 + 2

[Internal Assessment: 10 Marks]