2018

M.Sc. 1st Seme. Examination

ELECTRONICS

PAPER-ELC-104

Full Marks: 50

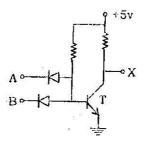
Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Analog Electronics


Group-A

1. Answer any four questions:

4×2

- (a) If the differential voltage gain and common mode voltage gain of a differential amplifier are 48 dB and 2 dB respectively, then find out its common mode rejection ratio.
- (b) State and explain Miller Theorem.
- (c) Describe thermal runway of a transistor.
 - (d) Implement $y = \overline{AB(C+D)}$ using CMOS.

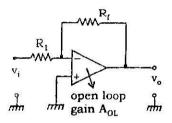
(c) Identify the logic circuit shown below:

- (f) Write two advantages of crystal controlled oscillator.
- (g) Draw a voltage regulator circuit using op-amp.
- (h) Define Q point of a transistor.

Group-B

2. Answer any four questions:

4×4

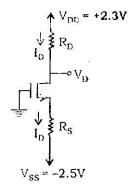

- (a) By proper circuit diagram explain triangular wave generator and calculate output frequency. 3+1
- (b) Write down operating principles of PLL by using proper block diagram.
- (c) Explain the operation of a switched mode power supply with proper diagrams. Write its advantages over series regulated power supplies.
- (d) Draw the circuit diagram of a common collector transistor amplifier and explain how this can behave as an emitter follower.
- (e) How transistor works as an amplifier ? Explain it using proper VTC curve.
 2+2

(f) Show that if a MOSFET is used as a switch, its ON resistance can be expressed as

$$(r_{ds})_{ON} = \frac{1}{\mu C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{Th})},$$

when $V_{DS} \ll (V_{GS} - V_{Th})$. The symbols have usual meanings.

- (g) Explain series voltage regulator circuit using op-amp.
- (h) Find the expression for the voltage gain of the following inverting OP-Amp circuit:


Group-C

3. Answer any two questions:

2×8

- (a) (i) Explain channel length modulation of a MOSFET.
 - (ii) Design the circuit of figure below, that is, determine the values of R_D and R_S so that the transistor operates at I_D = 0.4 mA and V_D = + 0.5V. The NMOS transister has V_t = 0.7V, $\mu_{\rm II} \cos$ = 100 mA/V², L = 1 μ m and W = 32 μ m. Neglect the channel-length modulation effect (i.e., assume that λ = 0).

١.

4+4

- (b) (i) How op-amp act as a comparator? Briefly discuss with proper circuit diagram and give input-output waveform.
 - (ii) Explain Schmitt trigger circuit.

(2+2)+4

- (c) Draw Common-Emilter (CE) amplifier circuit. Replace the basic circuit by its hybrid-a model. Derive input impedance, output impedance, voltage gain and current gain. 1+1+2+2+2
- (d) (i) What is an instrumentation amplifier and why this is needed? Draw the circuit diagram of an instrumentation amplifier using 3 OP-Amps and derive the expression for its output voltage in terms of input voltages.
 - (ii) Explain how a current mirror circuit is realised using low-β transistors in the architecture of an OP-Amp.

Internal Assessment - 10