2018

M.Sc. 1st Seme. Examination

ELECTRONICS

PAPER-ELC-103

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Electronic Materials

1. Answer any four questions:

4×2

- (a) What are F and V centers?
- , (b) Define Fermi surface.
 - (c) Mention the uses of Hall effect.

- (d) Why does the field seen by the dipoles in a solid differ from the applied field?
- (e) What is an intraband transition?
- (f) Explain the terms: soft and hard magnetic materials.
- (g) What is a coopr pair?
- (h) Name a few high-T_c superconductors.
- 2. Answer any four questions:

4×4

- (a) What is meant by crystal imperfections? Classify them in the order of their geometry.1+3
- (b) State the basic assumptions of the classical Drude theory of metals. Define relaxation time. 2+2
- (c) Deduce the Hall coefficient in a metal where the carriers are only electrons.
- (d) Establish the relationship among the electric displacement, field strength and polarization vectors.
- (e) Write a note on ferroelectricity.

- (f) Calculate the characteristic penetration depth of Al for Na light ($\lambda = 589$ nm, k = 6). What is an absorbance?
- (g) Derive an expression showing the temperature dependence of paramagnetic susceptibility.
- (h) What is a Meissner effect? Show that a soft superconductor is a perfect diamagnetic material.

2+2

3. Answer any two questions:

2×8

(a) Explain with neat sketches the line defects in crystals.

How does the Burgers vector identify the defects?

6+2

(b) The following data are given for Cu:

Density = $8.92 \times 10^3 \text{ kg/m}^3$

Resistivity = $1.73 \times 10^{-8} \Omega$ -m

Atomic weight = 63.5

Calculate the average time of collision of electrons in copper, obeying classical law.

Derive the Boltzmann transport equation.

3+5

- (c) Obtain an expression for the orientational polarization neglecting dipole-dipole interactions. Discuss what happens at high and low temperature. 5+3
- (d) For lead, the critical field at 0K is 6.39×10⁴ A/m and the critical temperature for zero magnetic field is 7.18K. Find the critical field for lead at 4K. What is a Joesphson junction? Explain dc Josephson effect. 2+1+5

Internal Assessment - 10