2018

M.Sc. 1st Seme. Examination ELECTRONICS

PAPER-ELC-101

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Mathematical Methods

Group-A

1. Answer any four questions:

4×2

- (a) Write down the change of scale property of Laplace transform.
- (b) Show that $\begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix}$ is a unitary matrix.
- (c) State Liouville's theorem.

(Turn Over)

- (d) State convolution theorem in Laplace transform.
- (e) Round of the following numbers correct up to 4-decimal places:
 - (i) 40.35856 (ii) 2.789654 (iii) 0.560012 (iv) 0.003156

 $\frac{1}{2} \times 4$

- (f) What do you mean by relative error and percentage error?

 1+1
- (g) If $\Delta x = 0.005$ and $\Delta y = 0.001$ be the absolute errors in x = 2.11 and y = 4.15, find the relative error in computation of x + y.
- (h) If $y = 4x^6 5x$, find the percentage error in y at x = 1, if the error in x = 0.04.

Group-B

2. Answer any four questions:

4×4

(a) Find the analytic function

$$w(z) = u(x, y) + iv(x, y)$$

if $u(x, y) = x^3 - 3xy^2$ and
 $v(x, y) = e^{-y} \sin x$.

(b) Using the convolution Integral, calculate

$$L^{-1}\left\{\frac{S}{\left(s^2+a^2\right)\left(s^2+b^2\right)}\right\}, \ a \neq b.$$

(c) Prove that the recurrence relation

$$2J_n'(x) = J_{n-1}(x) - J_{n+1}(x)$$

where $J_n(x)$ is Bessel function of order n.

(d) If $F(t) = t^a$ and $G(t) = t^b$, a > -1, b > -1 show that the convolution F * G is given by

$$F \star G = t^{a+b+1} \int_0^1 y^a (1-y)^b dy$$
.

- (e) Describe the graphical interpretation of Bisection method.
- (f) Find a position root of $x + \ln x 2 = 0$, by Newton-Raphson method, correct to six significant figures.
- (g) Evaluation $\int_0^{\frac{\pi}{2}} \sqrt{\sin x} \, dx$, taking n = 6, correct up to four significant figures by Simpson's one-third rule.
- (ii) Compute the root of the equation $2x \log_{10}x 7 = 0$, by Regula-Falsi method, which is in between 3 and 4, correct to three decimal places.

Group-C

S. Answer any two questions:

 2×8

 (a) (i) State Cauchy's integral theorem and apply the Cauchy-Riemann condition to prove it.

(ii) Expand
$$\frac{1}{(1-Z)}$$
 in a Taylor's series about $Z_0 = i$.

$$(2+4)+2$$

- (b) (i) State and prove the convolution theorem for Fourier transform.
 - (ii) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$. (2+3)+3
- (c) Compute y(0.6), by Range-Kutta method correct to five decimal places, from the equation

$$\frac{dy}{dx} = xy$$
, y(0) = 2, taking h = 0.2.

(d) Solve the system of equations, by Gauss elimination method

$$3x_1 + 9x_2 - 2x_3 = 11$$

 $4x_1 + 2x_2 + 13x_3 = 24$
 $4x_1 - 2x_2 + x_3 = -8$

[Internal Assessment - 10 Marks]