2018

M.Sc. 1st Seme. Examination COMPUTER SCIENCE

PAPER—COS-102

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

1. Answer any four questions:

- 4×2
- (a) What is the difference between computer architecture and computer organization?
 - (b) What is Von Neumann bottleneck?
 - (c) What is addressing mode? What is the advantage of it?

- (d) Distinguish horizontal and vertical microprogramming.
- (e) What is I/O driver?
- (f) Explain instruction pipeline with an example.
- (g) Define locality of reference.
- (h) Briefly explain the techniques for maintaining coherence in memory hierarchy.

Group-B

2. Answer any four questions:

4×4

(a) Implement the following expression using three address, one address, zero address and two address instractions.

$$X = (A + B) - (C + D).$$

1+1+1+1

- (b) Explain with example the following addressing modes:
 - · Implied mode,
 - · Stack addressing mode,
 - · Register indirect mode.
 - · Direct addressing mode.

1+1+1+1

4

(c) Draw and explain 4 bit carry propagrate adder.

- (d) What is control unit? Explain with diagram the microprogram control unit. 1+3
- (e) Briefly explain MIMD architecture.
- (f) Draw and explain UMA and NUMA model of multiprocessor system. 2+2
- (g) What is locality of reference? Explain different types of locality of reference. 1+3
- (h) What is pipeline hazards? Explain structural and control hazards. 1+3

Group-C

3. Answer any two questions:

- 2×8
- (a) (i) Find out the maximum speed up ratio of a K stage pipeline.
 - (ii) Consider a 4 stage pipeline processor with clock rate 20 MHz and number of instruction 4000. Calculate speed up, efficiency and throughput. 3+5
- (b) (i) What is the difference between RISC and CISC?
 - (ii) Explain different type of data hazards. 4+4

- (c) (i) Implement floating point adder-subtractor using four stage pipeline.
 - (ii) Calculate $0.9504 \times 10^3 + 0.8200 \times 10^2$ using the implemented pipeline. 5+3
- (d) Explain any two of the following:
 - (i) DMA,
 - (ii) Look ahead carry adder,
 - (iii) Virtual memory,
 - (iv) COMA model of multiprocessor.

4+4

Internal Assessment - 10