M.Sc. 3rd Semester Examination, 2018

CHEMISTRY

PAPER - CEM-301

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

(Physical Special)

GROUP-A(a)

Answer any two questions of the following: 2×2

1. For particle in a 1-dim box problem in (O, L), the approximate wave function is given by,

$$\psi = x(\frac{L}{2} - x) (L - x).$$

The average energy \overline{E} for such a system will obey,

$$(a) \ \frac{h^2}{8mL^2} < \overline{E} < \frac{h^2}{2mL^2}$$

(2)

$$(b) \quad \overline{E} > \frac{h^2}{2mL^2}$$

$$(c) \quad \frac{h^2}{4mL^2} < \overline{E} < \frac{h^2}{2mL^2}$$

$$(d) \quad 0 < \overline{E} < \frac{h^2}{8mL^2}$$

- 2. For some one electron system with l=0 and m=0, the function $N_0e^{-\sigma}$ and $N_1(2-\sigma)e^{-\sigma/2}$ refer respectively to the ground (E_0) and first excited energy (E_1) levels. If the trial wavefunction $N_2(3-\sigma)e^{-\sigma}$ yields an average energy \overline{E} , it will satisfy,
 - (a) $\overline{E} \ge 0$
 - (b) $0 \le \overline{E} \le E_0$
 - (c) $\overline{E} \ge E_1$
 - $(d) \quad E_0 < \overline{E} \le E_1$

- 3. A particle executing SHM is subjected to an external perturbation, $V = Cx^3$ (where 'C' is a constant). Find the first order correction to energy for its n = 5 state.
- 4. Write down the expression of the Hamiltonian operator and wave-functions for A, spin system.

GROUP-A(b)

Answer any two questions of the following: 2×2

- 5. If \hat{H} is the Hamiltonian operator and \hat{R} is any symmetry element of the point group of a molecule, then [H, R] = 0. Justify or criticize the statement.
- 6. What is Linear function space? Illustrate with an example.
- 7. What is meant by accidental degeneracy? Give one such example.
- 8. Write down three Pauli spin matrices which serve as basis for all 2×2 matrix having zero trace.

GROUP-B(a)

Answer any two questions of the following: 4×2

9. The trial wave function of a system is expanded as,

$$\psi_{I} = C_1 \phi_1 + C_2 \phi_2$$

The matrix elements of the Hamitonian are given by,

$$\langle \phi_1 | H | \phi_1 \rangle = 0$$
$$\langle \phi_1 | H | \phi_2 \rangle = 2$$
$$\langle \phi_2 | H | \phi_1 \rangle = 2$$
$$\langle \phi_2 | H | \phi_2 \rangle = 3$$

Find the approximate ground state energy of the system using linear variational principle.

10. Write down the Hamiltonian and wave functions for A - X spin system and hence obtain the 1st order correction to its ground state energy.

11. Ground state trial wave function for particle in 1-dim box problem (with unit length a = 1) is given by,

$$\phi = C_1 x(a-x) + C_2 x^2 (a-x)^2$$

Use variational principle to show that the obtained energy is greater than the exact energy.

12. State and proof Eckart's theorem.

Answer any two questions of the following: 4×2

13. The first order transition probability from state, |n> to state |k> for a two level system is given by,

$$P_{n\to k}^{(1)} = \frac{1}{h^2} \left| \int_0^t e^{iw_{kn}t'} H'_{kn} dt' \right|^2$$

where $H'_{kn} = \langle k | H' | n \rangle$.

Use H' as time dependent oscillating perturbation and hence deduce the expression of transition probability. Comment on your result.

- 14. Show that each non-degenerate MO of a molecule belonging to a particular point group serves as a basis for one-dimensional IR of the point group.
- 15. Consider a particle in 1-D box of length 'a' and its potential is given by,

$$V(x) = \infty ; x < 0$$

$$= \infty ; x > a$$

$$= 0 ; 0 \le x \le a/2$$

$$= V_1 ; a/2 \le x \le a$$

Consider V_1 as the perturbing potential and hence obtain the first order correction to its ground state energy.

16. A normalized state ϕ is constructed as a linear combination of ground state ψ_0 and first excited state ψ_1 with energies 1/2 and 3/2 respectively. If the average energy of the state, ϕ is $\langle E \rangle = 7/6$, then find the probability of ψ_0 in ϕ .

GROUP-C

Answer any two questions of the following: 8×2

- 17. State Hückel approximations for linear conjugated system and hence deduce the expression of energies and wave functions of π MO for Allyl radical.
- 18. Write down the steps involved for the determination of symmetry of vibrational modes of a linear molecule using integration method and hence obtain the symmetry of vibrational modes of HCN. Character table of C_{∞} point group is given below:

$C_{\alpha \nu}$	E	2C 2C 2C	#6 ∝J _v		
A_1	1	1	1	z	$x^2 + y^2, z^2$
A_2	1	1	-1	R,	
E_1	2	2cosθ	0	$(x, y)(R_x, R$	(xz, yz)
E_2	2	2cos2θ	0		(x^2-y^2, xy)
E_3	2	2cos30	0		

- 19. Deduce the expression of Fermi Golden rule. Comment on the final form of the expression.
- 20. Use linear variational principle to obtain the energy states of electron of H-atom in presence of an external magnetic field.

(Inorganic Special)

1. Answer any two questions:

 2×2

- (a) Explain the 'turnstile mechanism' for (1, 3-butadiene) Fe(CO)₃ complex. 2
- (b) How will you synthesize

via dehalogenation of dihalocyclobutane starting from Ni(CO)₄?

(c) 'Although being highly poisonous, C_pTl is one of the well-utilized C_p precursors"—Why?

2. Answer any two questions:

 4×2

- (a) What is catalytic converter? Schematically present the design of the device. What are the tasks of a catalytic converter?
- (b) '(η⁴ C₄H₄) Fe(CO)₃ is diamagnetic' –
 Discuss in the light of MO-theory.
- (c) bis (hexamethyl) rhenium is unstable in monomeric form at room temp. Write down the products when [(C₆Me₆)₂Re] PF₆ is treated with Li(I) at 200° C. Also mention the complex formed when the product is cooled to room temp. Draw the probable structure of the final product.
- (d) (i) Mention the essential requirements for oxidative addition reaction.

- (ii) What is orthometallation reaction?

 Cite one example of such reaction.
- 3. Answer any one question:

 8×1

(ii)
$$Ac_2O$$
 Yeast Phosphate

- (iii) Schematically present the catalytic cycle of Monsanto's acetic acid synthesis.
- (b) (i) How ferrocene boronic acid,

can be synthesized from ferrocene?

What will be the product when ferrocene boronic acid is treated with Cu(OAc)₂?

2+1

- (ii) What will be Produced if ferrocene is treated with POCl₃ in presence of DMF?
- (iii) Schematically present the catalytic cycle of Pd-catalysed Wacker Oxidation process.
- 4. Answer any two of the following questions: 2×2
 - (a) Why do the configurations d^n and d^{10-n} give identical ligand field terms in any given field symmetry?
 - (b) Show that the f-orbital whose angular wave function is constant times $\sin^2\theta \cos\theta \sin 2\phi$ is f_{xz} orbital.
 - (c) What do you mean by "Exclusion rule"?

1

- (d) Using group theory how can you explain the allowedness of d-d transitions in octahedral complexes?
- 5. Answer any *two* of the following questions: 4×2
 - (a) Use group theoretical principal to obtain the splitting of d-orbitals of Pt(II) in $[PtCl_4]^{2-}$ anion. (Given below the character table for D_4).

D_4	E	2C ₄	$C_2 \left(= C_4^2\right)$	2C'2	2C"2		
A_1	1	1	1	1	1		x^2+y^2,z^2
A_{2}	1	1	1	-1	-1	z, R	
B_1^2	1	-1	1	1	-1	1	$x^2 - y^2$
B_2	1	-1	1	-1	1		ху
E	2	0	-2	0	0	(x, y)	(xz, yz)
				<u> </u>		(R_x, R_y)	

(b) Establish the relation

$$\chi(\alpha) = \frac{\sin\left(l + \frac{1}{2}\right)\alpha}{\sin\left(\frac{\alpha}{2}\right)} \quad (\alpha \neq 0)$$

where the terms have usual significance.

(c) With the help of group theory determine the symmetry of vibrational modes of fac-[ML₃X₃] molecule using Cartesian coordinate method. Identify the symmetry of IR and Raman active modes in this molecule. (Given below the character table for $C_{3\nu}$).

$C_{3\nu}$	E	$2C_3$	3σ,	×	
A_1	1	1	I	z	$x^2 + y^2$, z^2
A_2		1	-1	R_{r} .	
E	2	-1	0	$(x, z)(R_x, R_y)$	$(x^2-y^2, xy)(xz, yz)$

- (d) With the help of group theory determine the symmetries of the group of orbitals of H-atoms which are effective for the σ-bond formation in NH₃ molecule. Construct a qualitative molecular orbital energy level diagram for this molecule.
- 6. Answer any one of the following questions: 8×1
 - (a) Applying group theory justify that eletrocyclic reaction of cis-butadiene must occur via conrotatory mechanism under thermal

condition but disrotatory mechanism under photochemical condition. (Given below the character table and correlation table).

-2v	E	C_2	$\sigma_{y}(xz)$	$\sigma_{\nu}(yz)$		
1,	1	1	1	i	Z	x^2, y^2, z^2
i,	1	1	-1	-1	R_z	хy
Β,	1	-1	1	-1	x, R_y	
B.	1	-1	-l	1	y, R_x	yz

1	E 8	3(xz)	$\sigma(yz)$
$C_{2^{n}}$	C_{2}	C_{s}	C_s
Á,	A	A'	A'
A_2	A	Á"	A''
B,	\mathcal{B}	A'	A''
B_2	В	A^{n}	A'

(b) With the help of group theory determine the symmetries of possible combinations of atomic orbitals of oxygen atoms which are effective for π-bond formation in nitrite anion. Find out the appropriate SALC for these symmetries. Construct qualitative π-molecular orbital energy level diagram for the nitrite anion.

(Organic Special)

GROUP-A

	Answer any four questions: 2	χŹ
1.	Why Wittig rearrangement is supressed in case of benzyl alkyl ethers of arenechromiumtricarbonyl complexes?	
2.	What do you mean by chelation control in Heck reaction? Illustrate your answer with an example.	
3.	Why a mixture of THF and di-n butyl ether is used as the medium of thermolysis for the synthesis of arenechromium tricarbonyl complexes?	2
4.	State the basic differences between Fischer and Schrock carbenes.	2
5.	How do you explain with proper example the effect of solvent on ρ value?	2
6.	What is Tebbe's reagent?	2
PG/II	IIS/CEM-301/18 (Turn Ove	r)

- 7. State the Grunwald-Winstein equation?
- 2

2

8. Predict the product/s for the following reactions and also write down the mechanism for the reaction:

GROUP-B

Answer any four questions:

 4×4

- 9. (a) Discuss the physical significance of ρ. What does positive and negative sign of ρ indicate?
- 2
- (b) Explain the relative rate of solvolysis for

the following substrates with proper mechanism:

- 10. (a) Explain why the first order rate of the solvolysis of (benzylchloride) Cr(CO₃) is 10⁵ times superior than the solvolysis of uncomplexed benzyl chloride.
 - (b) State the reasons for the popularity of the palladium complexes in organic synthesis.
- 11. (a) What are the drawbacks of using copper(I) cocatalyst in Sonogashira reaction?
 - (b) Why the substitution is strongly favoured at meta- with minor ortho- substitution in benzenechromiumtricarbonyl complexes carrying a single resonance donor substituent?

2

12. Write short notes on:

2 + 2

- (i) Yukawa-Tsuno equation
- (ii) Petasis regaent.
- 13. (a) Predict the product/s A, B, C for the following reactions:

(b) Predict the product of the following reaction with plausible mechanism:

- 14. What happens when chromium tricarbonyl complexes of arylidene derivatives, derived from benzosuberone are treated with ethyl acetoacetate in presence of base. Illustrate your answer with proper reaction mechanism.
- 15. (a) A linear Hammett plot is obtained in the alkaline hydrolysis of p- and m- substituted benzoic acid esters while the Hammett plot of similar esters in 99.9 % H₂SO₄ consists of two straight lines of positives and negative slopes meeting at zero. Explain.
 - (b) What do you mean by photochromium? Explain the phenomenon with proper examples.
- 16. (a) Predict the product of the following reactions with proper justification: $1\frac{1}{2}$

Comment on the enantiometric excess of the product formed.

GROUP-C

Answer any two questions:

 8×2

- 17. (a) Write down the synthetic steps involved with proper mechanism the synthesize [6]-radialene from cyclododeca 1, 5, 9-triyne.
 - (b) How does the curved Hammett plot obtained by plotting logarithms of rate constants of solvolysis of 3-aryl-2-butylbrosylaytesin

acetic acid, obtained by titrating the p-bromobenzene sulphonic acid formed, against the σ -values of the substituents on the aromatic ring establish the formation of a phenoniumion intermediate.

- (c) What is Nysted reagent? State the synthetic use of Nysted reagent giving proper reaction mechanism.
- 18. (a) Explain the formation of the products A and B with proper justification: 2

(b) How you can configure the proper reaction mechanism for a particular reaction using Hammett ρ value?

3

- (c) Site proper example for each of the following type of reaction and justify your answer: 3
 - (i) Reaction having large negative ρ
 value and (ii) Reactions with small ρ
 values.
- 19. (a) Identify the products in the following reaction with plausible mechanism: 2+2

(b)	Outline the various steps involved in the					
	catalytic Heck olefination reaction. Also					
	comment on the regioselectivity of the					
	reaction in presence of electron rich and					
	electron withdrawing groups.	4				

- 20. (a) How will you synthesize 2-substituted benzofurans from o-iodo phenol? $2\frac{1}{2}$
 - (b) Give a schematic representation of the proposed mechanism for the two catalytic cycles of Sonogashira reaction. 2\frac{1}{2}
 - (c) What happens when chromium tricarbonyl complex of fluorene is treated with base followed by methyl iodide at -40° C? Also predict the product with proper justification when the temperature is increased to -20° C prior to addition of methyl iodide?