2017

M.Sc. Part-I Examination

ZOOLOGY

PAPER-II (Group-B)

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-B

Answer any four questions taking two from each unit.

Unit-I

[Histology and Physiology]

			6.4
(b)	How formaldehyde reacts with several	parts	of the
	cellular protein molecules?		4
(c)	Write short notes on:		2×2

- (i) Secondary liquefaction;
- (ii) Fixation by heat;

1. (a) What is antolysis?

	(d)	How DNA molecules are fixed in laboratory.	$2\frac{1}{2}$
2.	(a)	Explain the necessity for staining of tissues.	$1\frac{1}{2}$
	(b)	State the difference between chromophore auxochrome. Cite an example mentioning chromophore and auxochrome part.	
	(c)	Classify dyes on the basis of their physicharacteristics. Cite examples for each type.	sical 3
	(d)	Briefly describe the preparation of a dye of an	imal
		origin with its commercial importance.	$2\frac{1}{2}$
	(e)	Elucidate the role of mordants in haematon	cylin
		staining of tissues.	$1\frac{1}{2}$
	(f)	Write notes on histological tissue preparation.	2
3.	(a)	Define Action potential.	$1\frac{1}{2}$
	(b)	Graphically represent the phases of action poter in a nerve fibre.	ntial 3
	(c)	Classify neurotransmitter molecules on the basichemical nature and size.	s of 2+2
	(d)	Write notes on:	2+2
		(i) Synaptic transmission and role of Ca ⁺⁺	
		(ii) Voltage gated sodium channel.	

4.	(a)	Briefly describe the fluid mosaic model of cell-mermbrane structure. $2\frac{1}{2}$
	(b)	Describe the positive and negative feedback in homeostasis. $1\frac{1}{2}$
	(c)	Explain the basic difference between a peptide and a steroid hormone receptors. $2\frac{1}{2}$
	(d)	Elucidate the mechanism of action of a peptide hormone. $3\frac{1}{2}$
	(e)	Draw the vitamin A visual cycle. $2\frac{1}{2}$

Unit-II

[Biophysics and Biochemistry]

- 5. (a) What is Osmosis?
 - (b) State Van't Hoff's equation of Osmotic pressure, defining all terms of the equation with units.
 - (c) Give Van't Hoff's equation for ionised solution. Give reason.
 - (d) Calculate the Osmotic pressure of one normal (1N) solution of cane sugar at 25°C. [Given R = 0.0821 Lit atm per degree per mole] $4+4+2\frac{1}{2}+2$
- **6.** (a) What is Tyndall effect of colloidial particles. $2\frac{1}{2}$

(b)	An enzyme catalyzed reaction has km of 1 mM and
	V _{max} of 5 nM. S ⁻¹ . What is the reaction velocity when
	the substrate concentration is

(i) 0.25 mM (ii) 10 mM

2

- (c) What is the second law of thermodynamics? "Increase of Entropy is a measure of unavailable energy"—Explain the statement.
- (d) How does surfactant molecule reduce surface tenstion?
- 7. (a) Write on the overview of β -oxidation of palmitic acid (a 16 carbon saturated fatty acid)?
 - (b) Explain how does the co-ordinated actions of transaldolase and transketolase recycles xylulose-5 phosphate to Glucose-6-phosphate.
 - (c) Explain why ATP act as a competitive inhibitor in phosphorylation reaction of hexokinase. 3
- 8. (a) Explain the flow of electrons through Q cycle with proper illustrations. $5\frac{1}{2}$
 - (b) Give brief accounts of inhibitons of enzyme activity with appropriate diagram.
 - (c) Enzyme lowers the activation energy—Explain your answer.
 - (d) What is transdeamination in amino acid metabolism?

2