2017

M.Sc. Part-II Examination

PHYSICS

PAPER-VIII

Full Marks: 75

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Use separate scripts for Group-A and Group-B)

Group-A

Answer Q.No. 1, 2, 3 and any two from the rest

1. Answer any five bits: 5x2

(a) For a spin S particle, in the eigen basis of S², S, the expectation value $\langle Sm/S_x^2/Sm \rangle$ is ___ (show with calculation).

3

- (b) For a spin $\frac{1}{2}$ particle, the expectation value of $S_x S_y S_z$ is ___ (show with calculation)
- (c) Show that $\gamma_{\mu}\gamma^{\mu} = 4$ where γ_{μ} are Dirac γ -matrices.
- (d) Prove that $\gamma_{\mu}^{+} = \gamma^{0} \gamma_{\mu} \gamma^{0}$
- (e) If $\psi_{\alpha}(x) = e^{-ip.x}u_{\alpha}(p)$ where $\alpha = 1, 2, 3, 4$ Show that Dirac equation in covariant form (p - m)u(p) = 0the bases of property of sound and
- (f) If $V(\bar{r}) = g\delta(\bar{r})$ Prove that total scattering crosssection.

$$\sigma = \frac{m^2 g^2}{\pi \lambda^4}$$
 for a particle of mass 'm'.

- Define scattering length. What are the physical significance of +ve and -ve scattering length?
- (h) Explain Thomas-Fermi statistical model.
- 2. Answer any two bits:

2×3

(a) If Projection operators

$$\wedge_+(p) = \frac{\cancel{p} + m}{2m}$$
 and $\wedge_-(p) = \frac{-\cancel{p} + m}{2m}$

Calculate $\wedge_{+}(p) \wedge_{+}(p)$

and
$$\wedge_{(p)} \wedge_{(p)}$$

(Continued)

- (b) If $\tilde{\alpha}_i$ be double Pauli matrix then prove that $\left[\tilde{\alpha}_{i}, \alpha_{j}\right] = 2\mathbf{i} \in_{ijk} \alpha_{k}.$
- (c) If $V(r) = \beta e^{-\mu r}$, when β and μ are positive constants, then prove that scattering amplitude $= \frac{-4m\mu\beta}{\hbar^2 (b^2 + \mu^2)^2}$ If we have the state of θ where $b = 2k \sin \frac{\pi}{2}$ and $E = \frac{\pi}{2m}$
- 3. Answer any one bit :

 1×4

(a) For a Dirac Hamiltonian

$$H = c\alpha_i p_i + \beta mc^2$$

Prove that
$$-\left[L_i + \frac{1}{2}\tilde{\alpha}_i, H\right] = 0$$

where α_i is the double Pauli matrices and L_i is the component of orbital angular momentum.

(b) Prove that:

$$\left[\vec{a} \cdot \vec{\sigma}, \ \vec{b} \cdot \vec{\sigma}\right] = 2i\left(\vec{a} \times \vec{b}\right) \cdot \vec{\sigma}$$

where \bar{a} , \bar{b} are two arbitrary constant vectors in 3 dimensions.

- **4.** (a) Consider an eigenstate of \vec{L}^2 and L_z operator denoted by $|l, m\rangle$. Let $A = \hat{n} \cdot \vec{L}$ denote an operator, where \hat{n} is an unit Vector. Prove that $\triangle A$ in the state $|l, m\rangle$ is $\sqrt{l(l+1)-m^2} \hbar \sin\theta$.
 - (b) Calculate the reflection and the transmission coefficients of a Klein-Gordon particle with energy E, at the potential

$$A^{0} = \begin{cases} 0 & z < 0 \\ U_{0}, & z > 0 \end{cases}$$

where U_O is a positive constant. 5+5

5. (a) If radial momentum p_r and radial velocity α_r for an electron in a central potential are defined by

I find the problem
$$p_r = \frac{\vec{r} \cdot \vec{p} - i\hbar}{r}, \ \alpha_r = \frac{\vec{\alpha} \cdot \vec{r}}{r}$$

show that $\vec{\alpha}.\vec{p} = \alpha_r p_r + \frac{i\hbar k \beta \alpha_r}{r}$

where $k = \frac{\beta(\vec{\alpha}'.\vec{L} + \hbar)}{\hbar}$, $\vec{\alpha}' = \text{double Pauli-matrix}$.

(b) Obtain the eigenvalues of the operator k. 5+5

- 6. (a) If $V(r) = V_0 \delta(r a)$ using partial wave analysis prove that $\frac{d\sigma}{d\Omega} \approx \frac{4\pi a^2}{k^2 a^2 + \left(1 + \frac{2mV_0 a}{\hbar^2}\right)^2}$, where $k^2 = \frac{2mE}{\hbar^2}$.
 - (b) Calculate fine structure energy levels for H-atom for n = 2. Use the formula you deduce. 5+5

Group—B

Answer Q.No. 1 and two from the rest

1. Answer any five bits :

5×3

- (a) A linear simple harmonic oscillator of mass m and frequency v. Calculate the number of microstates between the energy range E to E + δE.
- (b) A one-dimensional random walker takes steps to left or right with equal probability. Find the probability that the random walker starting from origin is back to origin after N even number of steps.
- (c) A two dimensional box in a uniform magnetic field B contains $\frac{N}{2}$ localised spin $\frac{1}{2}$ particles with magnetic moment µ and N/2 free spinless particles which do not intereact with each other. Find the average energy of the system at a temperature T.

(d) If for N localized distinguishable freely orientable dipoles $E = -\sum_{i=1}^{N} \vec{\mu}_i \cdot \vec{H}$

Find the cononical partition function.

- (e) Calculate the density maxtrix for a particle of mass m in an infinite potential box of volume 'V' in coordinate representation.
- (f) If energy level of 'e' in magnetic field B

$$\varepsilon = \frac{e\hbar B}{mc} \left(j + \frac{1}{2} \right) + \frac{p_z^2}{2m}$$

Calculate the degeneracy factor (where j = 0, 1, 2,3, ...) a di un'il amora harana estratorradac

(g) In Bethe approximation of Ising model explain the condition of self consistency of

$$\mathbf{H}_{\mathbf{q+1}} = -\mu \mathbf{B} \boldsymbol{\sigma}_{\mathbf{o}} - \mu (\mathbf{B} + \mathbf{B}') \sum_{j=1}^{q} \boldsymbol{\sigma}_{j} - \mathbf{J} \mathbf{e} \sum_{j=1}^{q} \boldsymbol{\sigma}_{\mathbf{o}} \boldsymbol{\sigma}_{j}$$

where q is the no. of nearest neighbours.

(h) Explain first order phase transition and second order phase transition in terms of order parameter with examples.

- 2. (a) Calculate the quantum mechanical partition function for a three deminsional Harmonic oscillator.
 - (b) Prove that $\mu(T, P) = K_B T \ln \left[\frac{h^3 c^3 P}{8\pi (K_B T)^4} \right]$ for photon gas.

5 + 5

3. (a) Deduce the equation of state for ideal Bose and Fermi gas.

(b) If the density matrix
$$\rho = \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 and $J_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

show that $\Delta J_z = 0.829$.

(c) If
$$\rho = \begin{pmatrix} \frac{1}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{3}{4} \end{pmatrix}$$
. Is it acceptable density matrix?

5 + 3 + 2

- 4. (a) Calculate the Debye frequency for n-dimensional solids in terms of N, V, C1, Ct. Where C1 and Ct are longituidinal and transverse speeds.
 - (b) Deduce total density of radiation in n-dimensional space using Planck's law.

5. (a) Using Bragg William appronination for Ising model, prove that long range order parameter

$$L(T) = \tanh \mu_0 \beta (H + H_m).$$

(b) In Bethe Pearl's approximation, if

$$\frac{Q_{+}}{Q_{-}} = \frac{1 + \tanh(\alpha + \alpha^{1} - J_{e}\beta)}{1 - \tanh(\alpha + \alpha^{1} + J_{e}\beta)}$$

where $\alpha = \mu_0 H \beta$; $\alpha^1 = \mu_0 H_m \beta$;

Q+ is the probability that the spin in the upward direction and similarly for Q- then prove that for two

dimensional latice
$$T_C = \frac{2.88 \text{ Je}}{K_B}$$
.