OLD

2016

M.Sc. Part-I Examination

CHEMISTRY

PAPER-II

Full Marks: 100

Time: 4 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Organic Chemistry)

Answer any five questions, taking at least two from Group-A and B.

Group-A

1. (a) Write the structures of the products expected from both ways of electrocyclic transformation and tell which one is preferred and why?

- (b) Draw a correlation diagram for the transformation of butadiene — Cyclobutene under thermal condition.
- (c) Predict the product of the given reactions showing FMO interaction. (any four)

(i)
$$hv \rightarrow ?$$

(ii)
$$\xrightarrow{H}$$
 $\xrightarrow{\Delta}$?

(a) When compound (A) is irrated with UV light for 115 hours in pentane, a isomeric compound (B) is obtained that decolorizes bromine in CCl₄ and reacts with ozone to give a compount (C).

- (i) Give the structure of (B) and the stereochemistry of both (B) and (C). 3
- (ii) On heating to 90°C, compound (D), G stereoisomer of (B), is converted into (A), but compound (B) is virtually inert under the same conditions. Identify compound (D) and account for these observations.

(i)
$$+$$
 \bigcirc \triangle ?

(ii)
$$\longrightarrow$$
 + \bigwedge NEt₂ $\xrightarrow{\Delta}$

(iii)
$$+\sum_{CN}^{CN} CN \xrightarrow{\Delta}$$
?

(iv)
$$Ph_3C \equiv C - Ph + CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{hv} ? 2\times3$$

(c) Predict the stereochemistry of compounds (F) & (G).

$$(E) \qquad (F) \qquad (CH_3 \xrightarrow{-10^{\circ}C} \xrightarrow{CH_3} \xrightarrow{20^{\circ}C} \xrightarrow{H} \xrightarrow{CH_3} \xrightarrow{CH_4} \xrightarrow{CH_3} \xrightarrow{CH_4} \xrightarrow{CH_4} \xrightarrow{CH_4} \xrightarrow{CH_5} \xrightarrow{CH_5$$

What stereoisomer of (E) also gives compound (G) on heating?

- 3. (a) Show how the transition state for a [3, 3] signatropic reaction can be analyzed as the interaction of two allylic ions.
 - (b) Explain the formation of the product (any six):

C/17/DDE/M.Sc./Part-I(O)/Chem./2

(Turn Over)

$$(v) \qquad \stackrel{\text{Me}}{\longrightarrow} \qquad \stackrel{\text{H}}{\longrightarrow} \qquad \stackrel{\text{H}}{\longrightarrow} \qquad \stackrel{\text{Me}}{\longrightarrow} \qquad \stackrel{\text{H}}{\longrightarrow} \qquad$$

(vii)
$$+$$
 COOMe AlCl₃ (Major)
$$0^{\circ}C$$
MeOOC

2×6

(c) How would you employ pericyclic reaction in the synthesis of the following:

4. (a) Predict the product for given reactions.

(i)
$$\xrightarrow{\text{Cl}}$$
 $\xrightarrow{\text{PhCo}_3\text{H}}$? $\xrightarrow{\text{80°C}}$? $\xrightarrow{\text{CHCl}_3}$?

(ii)
$$COOH \xrightarrow{\text{Li / THF}} ? \xrightarrow{\text{CH}_3\text{CH}_2\text{Br}} ?$$

(iii)
$$? \stackrel{\text{(i) } O_sO_4}{\text{(ii) } Aq \text{ NaSO}_3} \longrightarrow \frac{I_2 / \text{HgOAc.}}{\text{ACOH, } H_2O} ?$$

1×6

(b) Supply appropriate reagents in each case.

(i)
$$\xrightarrow{\text{Br}} \xrightarrow{?} \xrightarrow{\text{D}} \text{H}$$

(ii)
$$H \xrightarrow{\text{Me}} CN$$
 ? $H \xrightarrow{\text{Me}} O$

(c) Phosphonium ylide on reaction with cyclohexanone gives alkene while sulphonium ylide gives an epoxide. note resto showeld see also 3 Explain.

(d) Identify A, B, C and D:

$$\begin{array}{c} \text{COOM} \xrightarrow{\text{Li BH}_4} \text{A} \xrightarrow{\Delta} \text{B} \\ \\ \text{COOMe} \xrightarrow{\text{B}_2 \text{H}_6} \text{C} \xrightarrow{\Delta} \text{D} \end{array}$$

5. (a) Delineate the presence of double bond in the ring of 3 α -terpineol.

(b) Carry out the biogenetic conversion (i) IPP to Citral (ii) Acetyl CoA ---> IPP 3×2

- (c) How would you proof the presence of α , β unsaturated carbonyl group in citral.
- (d) Linalool $\xrightarrow{H_3O^+}$ Geraniol. How much information could be procured from the above conversion regarding the structure of linalool?

- **6.** (a) Explain the following observation: $2\frac{1}{2} \times 2$
 - (i) Indole undergoes electrophilic substitution reaction at 2-position.
 - (ii) Furan has greater tendency to undergo cycloaddition reaction than pyrrole.
 - (b) Logically develop the synthesis of the following compounds (any two):

(c) Predict the product(s) with plausible mechanism. (any *three*): 2×3

(i)
$$\frac{\text{Br}}{160^{\circ}\text{C}}$$
 $\frac{\text{aq NH}_3}{160^{\circ}\text{C}}$?

(ii)
$$Reconstant Me$$
 $Reconstant Me$ $Reconst$

(iii)
$$Me \xrightarrow{CF_3Co_2H} ?$$

(iv)
$$CH_3 \xrightarrow{AC_2O}$$
?

7. (a) Explain why the aromatic protons are more deshielded than the ethylenic protons although both the types of protons are attached to sp² hybridised carbon?

2

- (b) How would you distinguish between cis and trans stilbenes on the basis of ¹HNMR spectroscopy? 2
- (c) Explain why the aldehydic proton appears much down field in the ¹HNMR spectrum? 2
- (d) Explain the ¹HMR spectrum for pure ethanol. 3
- (e) How will you distinguish between p-xylene and mesitylene using spectroscopy technique? 2
- (f) Why TMS is used as an internal standard? 2
- (g) A compound having molecular formula C₁₀H₁₄ gave the following ¹HNMR data: (i) 00.88 (9H, s) and (ii) 7.28 (5H, s). Assign the structural formula to the compound.
- 8. (a) Give an experimental evidence infavor of erythro configuration of ephedrine and three configurations of ψ -ephedrine.

(b) Explain the formation of product when ephedrine was subjected to Hoffmann exhaustive methylation. What information was obtained from this experiment.

3+1

- (c) Elucidate the configuration of C-2 of N-methyl pyrrolidine nucleus of nicotine.
- (d) Carryout the transformation:

$$CN$$
 (\pm) nicotine

- 9. (a) What is the designation of erythro isomer of CH₃CH (D) CHBrCH₃ according to pref-part system of nomenclature?
 - (b) Comment on the chirotopicity and stereogenicity of the C-3 centre of the following compound:

2

(c) The energy barrier for following epimerisation is lower in comparison to that in the case of corresponding cyclohexanes. Explain

$$\begin{array}{c}
\text{Me} \\
\text{H} \\
\text{O}
\end{array}$$

(d) How can you easily distinguish between the following two cyclohexane derivatives?

Explain whether the following compound is chiral or not. Assign 'P' or 'M' descriptor of the following compounds.

 2×3

(Continued)

10. (a) Write down the major and minor products in the reaction between PhMgBr and the ester formed by pyruvic acid and (R)-2-octanol. Show proper transi-3 tion state.

(b) Write down the condition for alropisomerism.

(c) What is the major product in the following reactions?

(i)
$$OH \xrightarrow{\text{tBuOOH}} ?$$

$$CH \xrightarrow{\text{Ti(O}^{\text{i}}\text{Pr)}} ?$$

$$L(+) \text{ DET}$$

$$DCM, -20 °C$$

 2×2

2

(d) Write the products of the following reactions and give plausible mechanism in each case.

(i)
$$CH_3$$
 CH_3
 NH_2
 $Br_2 / KOH ?$

(ii)
$$H_3C$$

Et

 CH_3
 CH_3
 $NaNO_2$ / dil $HC1$
 $RANO_2$ / dil $HC1$
 $RANO_2$ / dil $HC1$

2×3