NEW

2015

BCA

4th Semester Examination

OPERATING SYSTEM

PAPER-2202

Full Marks: 100

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Answer Q. No. 1 and any four from the rest.

- Define with example (any five): 5×2
 spooling, aging, swapping, multitasking, system call, multi-threading, batch-processor.
- 2. (a) What is safe state and unsafe state?
 - (b) Write Banker's algorithm.

(c) Consider the following snapshot of a system:

Process	Allocation	Max	Available
	ABCD	ABCD	ABCD
P_1	0 0 1 2	0 0 1 2	2 1 0 0
P_2	2 0 0 0	2 7 5 0	
P_3	0 0 3 4	6656	
P_4	2 3 5 4	4 3 5 6	
P_5	0 3 3 2	0652	

Answer the following questions using the Banker's algorithm:

- (i) Calculate the need matrix.
- (ii) Is the system in a safe state or not?
- 3. (a) What is Semaphore? State and solve the readers' writers' problem with the help of Semaphore.
 - (b) How does logical address differ from physical address?
 - (c) What are the different state of a process? Discuss each of them. (3+4)+3+5
- **4.** (a) Write down the difference between paging and segmentation.
 - (b) What is optimal page replacement algorithm?

- (c) Consider the following page-reference string:
 1, 2, 3, 4, 2, 1, 5, 6, 1, 2, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6
 How many page faults would occur for the optimal page replacement algorithms, assuming 3 frames?
- (d) What is multiuser system?

4+3+5+3

- 5. (a) Explain briefly the hashed file organization.
 - (b) What is fixed partition? Give its advantages and disadvantages.
 - (c) What is Belady's anomaly? Give an example.

5+5+5

- **6.** (a) What is the difference between preemptive and non-preemptive scheduling?
 - (b) Explain priority scheduling algorithm.
 - (c) Consider the following set of processes:

Process	Arrival time	CPU Burst time
P_1	0	14
P_2	1	. 7
P_3	3	2
P_4	5	8

Draw the Grantt Chart for preemptive SJF scheduling and RR scheduling where time quantum q = 2 milliseconds.

Also find out average waiting time and average turn around time. 4+3+8

7. Write short notes on (any three) :

 3×5

- (a) Dining Philosophers problems.
- (b) PCB.
- (c) Multilevel Feedback Queue.
- (d) GUI.
- (e) Indexed Sequential file.

[Internal Assessment - 30]