NEW

2015

BCA

3rd Semester Examination

COMPUTER ORIENTED NUMERICAL METHOD AND STATISTICAL METHOD

PAPER-2103

Full Marks: 70

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Answer Question no. 1 and any four from the rest.

1. Answer any five questions:

 5×2

- (i) Show that $\Delta \cdot \nabla \equiv \Delta \nabla$
- (ii) What you mean by transcendental equation?
- (iii) Give geometrical significance of Simpson's $\frac{1}{3}$ rule.
- (iv) What are the advantage and disadvantage of regula falsi method?

(Turn Over)

- (v) Two coins are tossed. Find its probability distribution of the number of heads.
- (vi) What are the sufficient conditions for the convergence of the method of iteration?
- (vii) What is statistical inference?
- (viii) When may the bisection method be used to find a root of the equation f(x) = 0?
- 2. (a) Write standard normal density and distribution function of single variable.
 - (b) Evaluate f (0.33) using the following table:

х	0.3	0.4	0.5	0.6	0.7
f(x)	0.6179	0.6554	0.6915	0.7257	0.7580

8

- (a) Develop Trapezoidal rule of integration of a function from Newton's Forward interpolations method.
 - (b) Solve the following equations:

$$5x + 3y + z = 2$$

 $4x + 10y + 4z = -4$
 $2x + 3y + 5z = 11$

By Gauss - elimination method.

8

- 4. (a) Evaluate the integral $\int_{0}^{2} (2x^3 + 3x^2) dx$, using the Simpson's $\frac{1}{3}$ rule on taking h = 0.5.
 - (b) Explain the Regula-Falsi method to determine approximately one simple root of an equation f (x) = 0.
 Give its geometrical interpretation.
- 5. (a) Find a real root of the equation $f(x) = x^3 + x^2 + x + 7 = 0$ correct to three significant figure by bisection method.
 - (b) Evaluate $\int_{0}^{5} \frac{dx}{1+x}$ by taking h = 1, using trapezoidal rule. 8+7
- 6. (a) Solve by iterative method:

$$4x_1 + x_2 - x_3 = 4$$

 $x_1 - 8x_2 + 3x_3 = -4$
 $2x_1 + x_2 + 9x_3 = 12$

(b) Solve by Euller method, the following differential equation for x = 1 by taking h = 0.2.

$$\frac{dy}{dx} = x + y, y = 1 \text{ when } x = 0$$

Calculate upto four significant figures.

8+7

- 7. (a) Establish Newton-Raphson Method.
 - (b) Find the value of the constant K such that f(x) = Kx(1-x), 0 < x < 1

= 0 elsewhere.
is a probability density function. Cor

is a probability density function. Construct the distribution function and compute $P\left(x > \frac{1}{2}\right)$.

7+8