2017

M.Sc.

3RD SEMESTER EXAMINATION COMPUTER SCIENCE

PAPER-COS-301

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Advanced Operating System)

Answer any four questions: 4×10

- 1. (a) What do you mean by CPU scheduling?
 - (b) Compare and contrast among Long-Term Scheduler, Short-Term Scheduler, Medium-Term Scheduler. 3
 - (c) What are the advantages and disadvantages of SJF scheduling?

(d) Consider the following set of processes. CPU burst time of them are given in milliseconds:

Process	Arrival time	Execute time	Service Time		
P ₀	0	5	0 5		
P ₁	1	3			
P_2	2	8	8		
P ₃	3	6	16		

Draw the Gantt chart of R.R. scheduling where time quantum q = 3 milliseconds. Calculate the average waiting time.

- 2. (a) Why thread is called "Light weight process"? Discuss.
 - (b) Write the differences between Thread and Process.
 - (c) Describe the Kernal level thread.
 - (d) What is a critical section? Write any of the possible solutions for the critical section problem. 1+2
- (a) What is a Deadlock? Describe the criteria for deadlock.
 - (b) How to avoid Deadlocks?
 - (c) Write any of strategies to remove deadlock after its occurrence.
- 4. (a) Write Banker's Algorithm for finding out whether or not a system is in a safe state.

(b) Consider the following snapshot:

Process	Allocation			Max			Available		
	A	В	С	A	В	С	Α	В	C
P ₀	0	1	0	7	5	3	3	3	2
P ₁	2	0	0	. 3	2	2			
P ₂	3	0	2	9	0	. 2	12		
P ₃	2	1	1	2	2	2	1		
P ₄	0	0	2	4	3	3			

Anser the following questions using the Banker's algorithm

- (i) What is the content of the Need matrix?
- (ii) Is the system in a safe state?
- (iii) If a request from process P I arrives for (1, 0, 2), can the request be granted immediately?
- 5. (a) Explain the difference between internal fragmentation and external fragmentation. Which one occurs in paging system ? How the problem of external fragmentation be solved ? 3+2+2
 - (b) State the advantages and disadvantages of single contiguous memory allocation.
- 6. (a) What is thrashing?
 - (b) Explain Belady's anomaly. 3
 - (c) Why are page sizes always power of 2?

6

- (d) Consider a logical address space of eight pages of 1024 words each, mapped onto a physical memory of 32 frames.
 - (i) How many bits are there in the logical address?
 - (ii) How many bits are there in the physical address?

[Internal Assessment - 10 Marks]