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ABSTRACT
Ro space in intuitionistic L-topological spaces aréirded and studied in this paper. We
discussed six notions of RBpace in intuitionistic L-topological spaces anduced
certain relationship among them. We also showedtl alaof these definitions satisfy
‘hereditary’ property and preserved under one-on& and continuous mapping.
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1. Introduction

The idea of fuzzy sets and L-fuzzy sets were ilhtimtroduced by Zadeh [16] in 1965
and Goguen [12] in 1967 respectively. After therl@84, intuitionistic fuzzy sets were
first published by Attanassov [1] and many workstly same author and his colleagues
appeared in the literature [2-4]. Later, this cquiosas generalized to ‘intuitionistic L-
fuzzy sets’ by Atanassov and Stoeva [5]. Here, nteduced ‘intuitionistic L-topology’
by using ‘intuitionistic L-fuzzy sets’ in the sensé Chang [6]. Moreover, we defined
possible six notions, investigated some propertesl features of R space in
intuitionistic L-topological spaces.

2. Notation and preliminaries

Through this paper, X will be a nonempty sefye the empty set, ardis a complete
distributive lattice with 0 and 1. A , B, ... be uitfonistic L-fuzzy setst be the

intuitionistic topology,z be the intuitionistic L-topologyli = [0, 1], and the functions
us:X - L andy,: X - L denote the degree of membership (namegjyx)) and the

degree of none membership (namgjyx)).

Now we recall some basic definitions and known ltesn intuitionistic L-fuzzy sets and
intuitionistic L-topological spaces.

Definition 2.1. [16] Let X be a non-empty set and= [0,1]. A fuzzy set inX is a
functionu: X — I which assigns to each elemert X, a degree of membershifx) € I.
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Definition 2.2. [13] Let f: X - Y be a function and be fuzzy set iki. Then the image
f(wis a fuzzy set iy which membership function is defined by

F@)) = {sup(u@)|f(x) = y}itf1(y) # D, x € X
F@H) = 0iff'(y) =0, x € X.

Definition 2.3.[12] Let X be a non-empty set aihdbe a complete distributive lattice with
0 and 1. An L-fuzzy set i is a functiona: X — L which assigns to each elemene X
a degree of membershigp(x) € L.

Remark 2.4. Throughout this paper we consider the completeribigive lattice
L =1{0,0.1,0.2,...,1} and from the above definitions we show that e\efyzzy set is
also a fuzzy set but converse is not true in génera

Example 2.4.1. Let X ={a,b,c} and L ={0,0.1,0.2,...,1}. A function a:X = L is
defined bya(a) = 0.2, a(b) = 0.5,a(c) = 0 which is L-fuzzy set and also a fuzzy set.

Example 2.4.2. Let X ={a,b,c} and I =[0,1]. A function u: X - I is defined by
u(a) = 0.25,u(b) = 0.55,u(c) =0 which is fuzzy set but not an L-fuzzy set
becaus®.25,0.55 ¢ L.

Definition 2.5.[5] Let X be a non-empty set aidbe a complete distributive lattice with
0 and 1. An intuitionistic L-fuzzy set (ILFS for @) A in X is an object having the form
A = {(x, pa(x),74(x)): x € X}. Where the functiong,: X - L andy,: X - L denote the
degree of membership (namely(x)) and the degree of none membership
(namelyy,(x)) of each elemenk € X to the sefl, respectively, and < u,(x) +
ya(x) <1 for eachx € X.

Let L(X) denote the set of all intuitionistic L-fuzzy satX.Obviously every L-
fuzzy setu,(x) in X is an intuitionistic L-fuzzy set of the forfa,, 1 — uy).
Throughout this paper we use the simpler notatien(uy,y,)instead of A =

{(e ua(), ya(0)): x € X}.

Definition 2.6. [9] Let A = (uy4,v4) andB = (ug, yg) be intuitionistic L-fuzzy sets in X.
Then

(1) AcBifandonlyifuy < ug andy, =y

(2) A=BifandonlyifAS B andB c A

(3) A= (Ya,1a)

(4) ANB = (ug N ug;¥aY¥s)

(5) AUB = (ug U pg;¥aN¥p)

(6) 0.=(0",17)andl. =(17,07).

Let f be a map from a seéf to a setY. Let A = (uy,74) be an ILFS ofX andB =
(ug,yg) be an ILFS ofY. Then f~1(B) is an ILFS ofX defined byf~1(B) =

(fY(up), f~Y(yg)) and f(A)is an ILFS of Y defined by f(4) = (f(uA),l -
faa- VA))-
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Definition 2.7.[10] An intuitionistic topology (IT for short) on aonempty sef is a
family t of IS’s inX satisfies the following axioms:

(i) o..X. €t

(i) If G,,G, €tthenG; NG, Et.

(i) If G; € t for eachi € Athen U;cp G; € t.

Then the pail(X, t) is called an intuitionistic topological space (|Tf8r short) and the
members of are called intuitionistic open sets (IOS for short

Definition 2.8.[11] An ITS (X, t)is calledl — T, space if for alk,y € X,x # y,3 an 10S
G =(A1,A;) et suchthaic € A,y € A, ory € A, x € A,.

Definition 2.9.[14] Let p,q € L ={0,0.1,0.2,...,1}andp + g < 1. An intuitionistic L-
fuzzy point (ILFP for shorty, )0f X is an ILFS ofX defined by

@ify=x
o) = { (0,1)if y # x
In this casex is called the support of;, 4y andp andq are called the value and none
value ofx, o), respectively. The set of all ILFP &fwe denoted it by (X).
An ILFP x(;, o) is said to belong to an ILF& = (u,,y4) of X denoted by, o) € 4, if
and only ifp < pus(x) and g = ya(x) but x4 € A if and only if p > u,(x) and

q < ya(x).

Definition 2.10. [14] If A is an ILFS andx(, o) is an ILFP then the intersection between
ILFS and ILFP is defined ag, ;) N A = (p N pa(x); q Uya(x)).

Definition 2.11.[14] An intuitionistic L-topology (ILT for short) o X is a familyz of

ILFSs inX which satisfies the following conditions:

@i 0.1.€r.

(i) IfA;,A, €etthend; N4, €.

(i) If A; € tfor eachi € Athen U;cp 4; € T.

Then the pail(X, ) is called an intuitionistic L-topological spac&TsS, for short) and
the members of are called intuitionistic L-fuzzy open sets (ILFG& short). An
intuitionistic L-fuzzy setB is called an intuitionistic L-fuzzy closed set FIC for short)
fl-Ber.

Definition 2.12. [9] Let (X, t) and(Y,s) be two ILTSs. Then a magf X — Y is said to

be

(i) Continuous iff~1(B) is an ILFOS ofX for each ILFOSB of Y, or equivalently,
f~(B) is an ILFCS of¥ for each ILFCSB of Y,

(i) Openiff(A4) is an ILFOS ot for each ILFOHA of X,

(iii) Closed iff(A) is an ILFCS ofv for each ILFCH of X,

(iv) A homeomorphism if is bijective, continuous and open.
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3. Definition and properties of intuitionistic lattice fuzzy Ro spaces
In this section, we give sixnotions gfRpacein intuitionistic L-topological spaces and
establish some of their related theorems.

Definition 3.1. An ILTS (X, 1) is called
(@) IL—Ry() if for all x,y € X,x #y, whenever3 ILOS A = (uu,y4) € T with
pa(x) = 1,ya(x) = 0;u4(y) = 0,y4(y) =1 then 3B = (up,yp) €7 such that

and pp(y) = Lyp(y) = 0,up(x) = 0,yp(x) = 1.
(b) IL — R, (ii) if for any pair of distinct ILFPx(, 4y ,y(rs) € S(X) wheneved ILOS

A= (uava) ET With xq) €A, Yirs) € A then 3B = (ug,yg) € T such that
Yas) € B, Xp,q) € B.

(c) IL — Ry (iii) if for any pair of distinct ILFP, 4y , ¥(r5) € S(X) wheneved ILOS
A= (pava) With x40 €A, Yy NA=0_ then 3B = (ug,yg) € T such that
:)/(r's) € B, X(p,q) NB=0..

(d) IL—Ry(iv) if for all x,y € X,x #y whenever 3 ILOS A = (uy,y,) € T With
ta(x) > 0,y4(x) = 0;us(y) = 0,7,(y) >0 then 3B = (up,ygp) €T such

thatuz () > 0,y5(y) = 0,pup(x) = 0,y5(x) > 0.
() IL—Ry(v) if for all x,y € X,x # y whenever3 ILOS A = (uy,v4) € T Wwith

Ua(x) > pa(¥);va(y) > va(x) then 3IB = (up,yg) €t such that ug(y) >

tp(x); ve(x) > yp(y).
(H IL—Ry(wi) if for all x,y € X,x #y whenever3 ILOS A = (uy,y4) € T With

pa(x) # ua(y);va(x) # va(y) then 3B = (ug,yg) €t such that up(x) #
te(¥);ve(x) # vp(y)

Theorem 3.2. Let (X, 7) be an ILTS. Then we have the following implicason
IL — Ry (id)IL — Ro(i)KA \

IL — Ry(D)IL — Ry(v) / l' .,

e IL —E&ii) IL — Ry (#)

Proof: IL — Ry(i) = IL — Ry(iv) = IL — Ry(v) = IL — Ry(vi): Suppos€X, 1) is
anIL — Ry(i). Then we have by definition, if for all, y € X, x # y, wheneverd ILOS

A= (ugva) €t with  pa(x) = 1,y,(x) =0, us(y) =0,7,(y) =1 then 3B =
(ug,vg) € T such thaug(y) =1,y5(y) = 0,ug(x) = 0,y5(x) = 1. Hence we have

) { AILOS A = (g, va) € Twith s (x) > 0,74(x) = 0; 4 (y) = 0,74(y) > 0
then 3 B = (ug,¥g) € Tsuchthat ug(y) > 0,y5(y) = 0,ug(x) =0,y5(x) >0
(2) e oo { JILOS A = (g, ¥a) € T With ps (%) > pa(); va(y) > ya(x)
then3d B = (ug,yg) €71 such_ that ug(y) > ug(x); yg(x) > vg(y).
(3) o — { FILOS A = (4, va) € Twith pg(x) # pa(¥); valx) # va(y)
then 3 B = (ug, yp) € 7 such that ug(x) # ug(y); vs(x) # ye().

From (1), (2) and (3) we see thHt — Ry(i) = IL — Ry(iv) = IL — Ry(v) = IL —
Ro(vi).
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IL— Ry(i) = IL — Ry(v)and IL — Ry (i) = IL — Ry(vi): Suppose(X,1)is aniL —
Ry (i). Then we have by definition, if for akt,y € X,x # y, whenever3 ILOS A =
(ta va) € T With pa(x) = 1,y4(x) = 0;ua(y) = 0,7a(y) =1 then3B = (up,y5) €7
such thatg(y) = L,yp(y) = 0, up(x) = 0,y5(x) = 1.
- { JILOS A = (ua,va) € Twith py(x) > pa(¥);va(y) > va(x)
then 3 B = (up,yp) € T such that ug(y) > pg(x); yp(x) >y ().
(5) oo - { FILOS A = (pa,va) € T with s (x) # pa(); va(x) # va(y)
then 3 B = (up,yp) € T such that ug(x) # pup(y); vs(x) # v ().
From (4) and (5) we see thidt— Ry (i) = IL — Ry(v)and IL — Ry (i) = IL — Ry (vi).
IL — Ry(iv) = IL — Ry(v): Suppose(X,t) is an IL — Ry(iv). Then we have by
definition, if for all x,y € X,x # y whenever3 ILOS A = (uy,v4) € T With py(x) >
0,74(x) = 0;44(y) =0,y4(y) >0 then 3B = (ugyp) €t such thaiz(y) >
O'YB(:Y) = Ol:uB(x) = O,VB(X) > 0.
{ JFILOS A = (ug,¥a) € Twith py(x) > pa(¥); va(y) > va(x)
then 3 B = (up,yp) € tsuch that ug(y) > pp(x); vp(x) > yp(y).
This isIL — Ry (v).
IL — Ry(iv) = IL — Ry(vi): Suppose(X,t) is anIL — Ry(iv). Then we have by
definition, if for all x,y € X,x # y whenever3 ILOS A = (uy,v4) € T With py(x) >
0,74(x) = 0;ua(y) =0,74(y) >0 then 3B = (up,yp) €t such thaiz(y) >
O'YB(:Y) = Ol:uB(x) = O,VB(X) > 0. .
7)o R { JILOS A = (ua, va) € Twith pg (x) # pa(y); va(x) # va(y)
then 3 B = (up,yp) € Tsuch that up(x) # ug(¥); ve(x) # v ().
From (7) we see thalL — R, (iv) = IL — Ry (vi).
IL — Ry (ii) = IL — Ry(i): Suppos€X, 1) is anIL — R, (ii). Then we have for any pair
of distinct ILFP x4y ,¥(rs) € S(X), whenevera ILOS A = (uy,v4) € T With x(;, 4) €
A, Yirs) € AthenaB = (up,yp) € T suchthay . € B, x(q) € B.

{ FILOS A = (ug,va) ETwithp < pg(x),q 2 va ()7 = pa(y), s < va(y)

then 3B = (up,yp) € Tsuchthatr < up(y),s =2 yp(¥);p 2 pp(x),q < yp(x)

{3 ILOS A = (4, 74) € Twith uy(x) = 1, y4(x) = 0;u4(y) = 0,y,(y) = 1 and

then 3B = (up,yp) € T such thatup(y) = 1,y5(y) = O up(x) = 0,yp(x) = 1.
Asp,q,1,s € L=1{0,0.1,0.2,...,1}. Which isIL — Ry (ii) = IL — R, (i).
IL — R, (iii) = IL — Ry(i): Suppose(X,t) is an IL — Ry (iii). Then we have by
definition, for any pair of distinct ILFPx(p.0) »Y(rs) € S(X),whenever 3 ILOS A =
(Uar¥a) € TWithx(p, 0y € A, Y5y N A = 0. then 3B = (up,yp) € Tsuch that y.. ) €
B, X(p,q) NB=0..

FILOS A = (uy,va) ETwithp < py(x),q Zya(xX);r N ps(y) = 0,5 Uy (y) = 1
= and then 3B = (ug, yg) € 7 such that
r<pug(¥),s=ypg(¥)ipNup(x) =0,qUyp(x) =1
{3 ILOS A = (g, va) € Twith uy(x) = 1,74(x) = 0; 4 (y) = 0,y,(y) = 1 and

then 3B = (up,yp) € Tsuch that ug(y) = 1,y5(y) = O;up(x) = 0,y5(x) = 1.
Asp,q,r,s €L ={0,0.1,0.2, ...,1} which iSIL — R, (iii) = IL — Ry (i).
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None of the reverse implications is true in genatalch can be seen from the following
counter examples:

Example 3.2.1. LetX = {x,y},L = {0,0.1,0.2, ...,1} andt be an ILT onX generated by
{A, B} where A = {(x,1,0),(y,0,1)} and B = {(x,0,1), (y,1,0)}. Hence we see that
(X,1) isanIL — Ry (i) but notIL — Ry(ii)andIL — R, (iii).

Example 3.2.2. LetX = {x,y},L = {0,0.1,0.2, ...,1} andt be an ILT onX generated by
{A, B} where A = {(x,0.4,0.4), (y,0.3,0.5)} and B = {(x,0.5,0.4), (y,0.4,0.5)}. Hence
we see thatX, 1) is anIL — Ry (vi) but notIL — Ry (i), IL — Ry (iv) andIL — Ry (v).

Example 3.2.3. LetX = {x,y},L = {0,0.1,0.2, ...,1} andt be an ILT onX generated by
{A, B} where A = {(x,0.5,0.4), (y,0.4,0.5)} and B = {(x,0.4,0.5), (y,0.6,0.4)}. Hence
we see thafX, 7) is anIL — Ry(v) but notIL — Ry (i) andIL — Ry (iv).

Example 3.24. LetX = {x,y},L = {0,0.1,0.2, ...,1} andt be an ILT onX generated by
{A, B} whereA = {(x,0.4,0), (y,0,0.5)} and B = {(x,0,0.5), (v,0.5,0)}. Hence we see
that(X, 1) is anIL — Ry (iv) but notIL — R, (i).

Now we discuss ‘hereditary’ property of ILF i concepts, where (j =i, ii, iii, iv,v, vi.)

Definition 3.3. [14] Let (X,7) be an ILTS andi < X. we definer, = {u]A:u € 7} the
subspace ILT’s odl induced byr.Then(4,1,) is called the subspace @f,7) with the
underlying sed.

An IL-topological property ‘P’ is called hereditaifyeach subspace of an IL-topological
space with property ‘P’ also has property ‘P’.

Theorem 3.4. Let (X,7) be an ILTS and/ € X andty = {A|U: A € 7}. Then

(@) (X,7)isIL—Ro(i) = (U,ty) iSIL — Ry ().

(b) (X,7)isIL — Ry(ii) = (U, 1y) isIL — Ry (ii).

(€) (X,7)isIL — Ry(iii) = (U, 1y) isIL — Ry (iii).

(d) (X,7)isIL — Ry(iv) = (U,ty) isIL — Ry(iv).

(e) (X,7)isIL—Ry(v) = (U,1y) isIL — Ry(v).

() (X,7)isIL — Ry(vi) = (U,ty) isIL — Ry(vi).

Proof: We prove only (a). Suppos€X,t) is IL — Ry(i), we prove that(U,1y) is
IL —Ry(i).Let x,y eU,x#y. Thenx,yeX,x #y asU < X. Since (X,7) is IL —
Ry (i), we have for allk,y € X, x # y, whenever 3 ILOS A = (uy,v4) € T with uy(x) =
Lya(x) = 0;u4(y) = 0,y,(y) = 1 then 3B = (up,yp) € T such thatand ug(y) =
1,y5(y) = 0,ug(x) = 0,yg(x) = 1.ForU € X, we find ILOSA|U = (,uA|U,yA|U) €1y
With  pay(x) = L,yau(x) = 0, 4y (y) = 0,74y (y) = 1then I B|U = (#B|U:VB|U) €
Ty such that ugy(y) = L,ygu(@) = 0, ugu(x) = 0,ygu(x) =1lasU S X. Hence
(U, ty) iISIL — Ry (i). Similarly (b), (c), (d), (e), (f) can be proved.

We observe here that ILFs® ,(j = i, ii, iii, iv, v, vi ) concepts are pserved under
continuous, one-one and open maps.

104



Some Features of Intuitionistic LvRpaces

Theorem 3.5. Let (X, 1) and(Y,s) be two ILTS,f: (X,7) — (Y, s) be one-one, onto and
continuous map. Then
(@) (X,7)isIL—Ro(i) & (Y,s) isIL — Ry(i)
(b) (X,7)isIL — Ry(ii) & (Y,s) iSIL — Ry(ii)
(€) (X,7)isIL — Ry(iii) = (Y,s) isIL — Ry (iii)
(d) (X,7)isIL — Ry(iv) & (Y,s) isIL — Ry(iv)
(e) (X,7)isIL—Ry(v) & (Y,s)isIL — Ry(v)
(f) (X,7)isIL — Ry(vi) & (Y,s) isIL — Ry(vi).
Proof: We prove only (a). Suppode, 1) is IL — Ry(i), we prove tha(Y,s) is IL —
Ry (i). Let y1,y, €Y with y; # y,. Sincef is onto,3 x4, x, € X, such thatf(x;) =
v, f(xy) =y, andx; # x, asf is one-one. Again sincgX, t) is IL — Ry (i), we have
for all x;,x, € X,x; # x,,whenever 3an ILOS A = (uy,v4) €t With p,(x;) =
1,ya(x1) = 0,4 (x2) = 0,y4(xz) = 1then I B = (up,yp) €T such that up(x,) =
1,y5(x;) = 0,ug(x) = 0,y5(xy) = 1.Sincef: (X, 7) = (Y,s),whenever 3 ILOS
f(4) = (f(.uA)v 1-f1- VA)) with f(ua) (1) = {suppa(x1): f(x)) =y} =1
{1-fA =y} =1-fA =y (1) =1 —={sup(1 — ya)(x1): f (x1) = ¥4}
=1- {sup(l — yA(xl)):f(xl) = yl} =1—{sup(1-0)}=1-1=0And
fra)(r2) = {sup pua(x2): f(x2) = y,3 =0
(1= =y} =1 = f(A—ya)(y2) =1 —{sup(l — ya) (x2): f (x2) = ¥2}
=1- {sup(l - yA(xz)):f(xz) = yz} =1—{sup(1—1)}=1-0=1.Thergf(B) =
(flup),1—f(A—yp)) €s such that f(up)(y2) =L{1—-f(1—-yp)}y2) =
0;f(up)(y1) = 0;{1 — f(1 —yp)}(r1) = L.HencdY,s) isIL — Ry (D).
Conversely suppose théY,s) is IL — R,(i).We prove that(X,7) is IL — Ry (i). Let
Xq1,%, € Xwithx; # x, = f(x1) # f(x,)as is one-one. Puf(x;) = y;,and f(x,) =
yythen y; # y,. Since (Y,s) is IL — Ry(i),whenever3a ILOS A = (uy,y4) € s with
pa() = Lya(n) = 0; pa(y2) = 0,74(y2) = 1thena B = (up,yp) €s  such that
pe(1) =0,v5(y1) =1 pup(y2) = Lyp(yz) = 0.L.e.
{3 ILOS A = (ua, va) € s withpsf(x1) = 1,yaf (1) = 0;puaf (x2) = 0,yaf (x2) = 1
then3 B = (ug,yp) € s ppf(x1) = 0,¥5f(x1) = Lupf(x2) = Lypf(xz) = 0.
- {f_IHA(xl) =1, yalx) = 0; flua(x) = 0, f "ya(x,) = 1and
frup(x) = 0, f yp(xy) = 1 f M up(xz) = 1, f "lyp(xz) = 0.
Sinced = (uy,v4), B = (ug,vs) € s,Hence it is clear that iV x;,x, € X,x; # x,
whenever 3f1(4) = (f (). f () €T with  fTlua(r) = 1,f yaley) =
0; f Mualxz) = 0, f ya(xz) =1 then3f~H(B) = (f " (up), f~*(¥p)) € T such that
fup(e) =0, typ(x) = 1 f T up(ap) = 1, fyp(xy) = 0.
Hence(X, 7) is alsolL — R, (i).Similarly, (b), (c), (d), (e), (f) can be proved.
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