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ABSTRACT 
An analysis is made on the three dimensional free convection and mass transfer flow 
through a vertical channel in the presence of radiation. Approximate solutions have been 
obtained for the velocity, temperature and concentration fields using perturbation 
technique. It is found that the primary velocity decreases with the increase of both 
radiation parameter and Schmidt number but increases with the increase of thermal 
Grashoff number as well as mass Grashoff number. The temperature distribution 
decreases with the increase of both radiation parameter and Reynolds number. The 
Concentration field also decrease with the increase of both Schmidt number as well as 
Reynolds number. The shear stress and mass flux in terms of Sherwood number which 
are of physical interest are presented in the form of tables. 
 
Keywords: Three-dimensional, injection, periodic suction, mass transfer.  
 
1. Introduction 
Free convective flow with heat and mass transfer has been a subject of interest of many 
reseachers due to its day-to day application in science and technology. Such phenomenon 
are observed in buoyancy induced motions in the atmosphere, in bodies of water, 
quasi-solid bodies such as earth, etc. Guria and Jana [1] studied the unsteady three 
dimensional flow and heat transfer along a porous vertical plate subjected to a periodic 
suction velocity distribution. Guria and Jana [2] also have studied the effect of periodic 
suction on three dimensional vertical channel flow. Due to the periodic suction the flow 
becomes three dimensional In the above studies the radiation effect is ignored. It has 
important application in space vehicle re-entry problems. Many processes in engineering 
areas occur at high temperatures and it is important for the design of pertinent equipment. 
Nuclear power plants, gas turbines, and the various propulsion devices for aircraft 
missiles, satellites and space vehicles are example of such engineering areas. At high 
temperature radiation effect can be quite significant. The heating of rooms and buildings 
by the use of radiators is a familiar example of heat transfer by free convection. Heat 
losses from hot pipes, ovens etc surrounded by cooler air, are at least in part due to free 
convection. The effect of radiation on the flow past a vertical plate was discussed by 
Takhar et al. [3]. Guria et al. [4] investigated the effect of radiation on three dimensional 
flow in a vertical channel subjected to a periodic suction. Guria et al. [5] also studied 
investigated the effect of radiation on steady three dimensional flow past a vertical porous 
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plate in the presence of magnetic field. 
Sing and Thakar [6] discussed the effect of periodic suction on three dimensional mixed 
convection flow and mass transfer. Ahmed [7] also studied the effects of heat and mass 
transfer on the steady three dimensional flow of a viscous incompressible fluid along a 
moving vertical plate. Ahmed and Liu [8] studied the effects of heat and mass transfer on 
three dimensional flow past a vertical porous plate with uniform free stream velocity. 
Reddy and Reddy [9] studied radiation and mass transfer effects on unsteady MHD free 
convection flow past a vertical porous plate with viscous dissipation. However, the 
interaction of radiation with mass transfer in three dimension verical channel flow has 
received little attention. Recently, Guria [10] has studied the heat and mass transfer in 
three dimensional flow past a vertical porous plate in the presence of radiation. The main 
object of this paper is to study the three dimensional heat and mass transfer flow throgh 
the vertical channel in the presence of radiation. 
 
2. Formulation of the problem and its solution 
Consider the steady flow of viscous, incompressible fluid between vertical parallel 

porous plates separated by a distance d . Here the ⊻x - axis is chosen along the direction 

of the flow, ⊻y - axis is perpendicular to the wall of the channel and ⊻z - axis normal to 

the ⊻⊻ yx - plane [see Fig.1]. The temperature at the plates 0=∗y  and dy =∗  are 

wT  and 0T  )>( 0TTw  respectively. 

*x

*y

*z

* 0y =
*y d=

0V

wT 0T

 
Figure 1: Physical model and Co-ordinates system 

The plate dy =⊻  is subjected to a uniform injection 0V  and the plate 0=⊻y  to 

a periodic suction velocity distribution of the form  
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where 1)(≪ε  is the amplitude of the suction velocity. 

The velocity and temperature fields are independent of *x  since the channel is 

infinite long along *x -direction. The flow itself will be three dimensional due to cross flow. 

Let ⊻⊻⊻ wvu ,,  be the velocity components in the directions −−− ⊻⊻⊻ zyx ,,  axes 
respectively. The problem is governed by the following equations  
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where ν  is the kinematic coefficient of viscosity, ρ  is the density, ⊻p  is the fluid 

pressure, g  is the acceleration due to gravity, β  is the thermal expansion and pC  is 

the specific heat at constant pressure. ∗K  is the permeability of the medium. 
The equation of conservation of radiative heat transfer per unit volume for all 

wavelength is  

 ,))()(4(=.
0

λλλλ dGTeTKq hr −∇ ∗∗∞∗
∫  

 where heλ  is the Plank's function and the incident radiation λG  is defined as  

 ,)(
1

=
4=

ΩΩ∫Ω deG λπλ π
 

 ∗∇ rq.  is the radiative flux divergence and Ω  is the solid angle. Now, for an optically 

thin fluid exchanging radiation with an isothermal flat plate at temperature 0T  and 

according to the above definition for the radiative flux divergence and Kirchhoffs law, the 
incident radiation is given by )(4= 0TeG hλλ  then,  

 ,))()()((4=. 00
λλλλ dTeTeTKq hhr −∇ ∗∗∞∗

∫  
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 Expanding )( ∗TKλ  and )( 0Te hλ  in a Taylor series around 0T , for small )( 0TT −∗ , 

we can rewrite the radiative flux divergence as  
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λ d
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e
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r ∂
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∞∗∗  

 where )0(0
= TKK λλ .  

Hence an optical thin limit for a non-gray gas near equilibrium, the following 
relation holds  
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 The boundary conditions of the problem are  
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 equations (2)-(7) become  
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where ν/= 0dVRe , the Reynolds number, ρν/=Pr , the Prandtl number and 
2

00)/(= VTTdgGr w −β , the Grashof number, 2
00)/(= VCCdgGm w −β , the mass 
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Grashof number, ,/4= 0VCIdF pρ  the radiation parameter, DS /=ν , the Schmidt 

number. Using (9), the boundary conditions (8) become  
 0,=a1,=1,=0,=)],(cos[1=0,= ytCwzvu θπε+−  

 1.=a=0,=0,=0,=1,=0,=
2

yt
V

p
pCwvu

ρ
θ ∞−  (16) 

 
3. Solution of the problem  
In order to solve the differential equations (10)-(15), we assume the solution of the 
following form  

 ,),(),()(=),( 2
2

10 ⋯+++ zyuzyuyuzyu εε  

 ,),(),()(=),( 2
2

10 ⋯+++ zyvzyvyvzyv εε  

 ,),(),()(=),( 2
2

10 ⋯+++ zywzywywzyw εε  (17) 

 ,),(),()(=),( 2
2

10 ⋯+++ zypzypypzyp εε  

 .),(),()(=),( 2
2

10 ⋯+++ zyzyyzy θεεθθθ  

 .),(),()(=),( 2
2

10 ⋯+++ zyCzyCyCzyC εε  

 On substituting (17) in equations (10)-(15) and equating the terms independent of ε , 
we get the following system of differential equations  
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 On substituting (17) in equations (10)-(15) and equating the coefficient of ε , we get 
the following system of differential equations  
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 The corresponding boundary conditions become  
 0,=a0=0,=0,=),(cos=0,= 11111 ytCwzvu θπ−  

 1.=a0=0,=0,=0,=0,= 11111 ytCwvu θ  (33) 
 These are the linear partial differential equations describing the three dimensional flow. 
To solve the equations (28)-(32), we assume velocity components and pressure in the 
following form  
 ),(cos)(=),( 111 zyuzyu π  
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Substituting (34) in (28)-(32) and comparing the coefficients of harmonic terms, we 
obtain the following set of differential equations  
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 The other constants are not given here to save space. 
 
4. Results and discussion  
The velocity, temperature and concentration field for different values of the non 
dimensional parameters are plotted in the diagram.The value of dimensionless parameter 
Gr  is taken as positive. The positive value corresponds to an extremely cooled plate by 
the free convection currents. The value of Prandtl number is taken equal to and this value 
corresponds to the air. The values of Grashof numbers are taken to be large from the 
physical point of view. The large Grashof number values correspond to free convection 
problem. The Schmidt number (S) are taken for helium (S=0.3), water vapor 0.60)=(S , 

oxygen 0.66)=(S  and ammonia 0.78)=(S . The effect of Grashoff number, mass 
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Grashoff number, radiation parameter and Schmidt number on main flow velocity is 
shown in Figs.2-5. It is observed from Fig.2 that greater cooling of surface (an increase in 
Gr)results in an increase in the velocity. It is due to the fact that in the values of thermal 
Grashof number has the tendency to increase the thermal buoyancy effect. This gives rise 
to an increase in the induced flow. The primary velocity also increases with increase in 
mass Grashoff number. It is seen from Figs.4 and 5 that the primary velocity decreases 
with increase in radiation parameter as well as Schmidt number for cooling of the plate 

0)>(Gr . Knowing the velocity field it is interesting to know the shear stress at the plate. 

The shear stress at the plate 0=∗y  due to the primary flow is given by  
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 In non-dimensional form the shear stress at the plate 0=y  can be written as  
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 The shear stress due to the primary flow in terms of xτ  is shown in Table.1 for 

different values of Reynolds number and Schmidt number for cooling of the plate. It is 
seen that xτ  increases with increase in Reynolds number but it decreases with increase 

in Schmidt number for cooling of the plate.  
  

xτ  

Re\ S   0.3 0.6  0.66 0.78 

2   3.08 2.58  2.43  2.00 
3  4.34 3.31  3.04  2.27 
4   5.49 3.84  3.44  2.35 
5  6.50 4.15  3.62  2.27 

Table 1: Shear stress component due to primary flow for for 5.0=Gr , 0.71=Pr , 
0.25=ε , 0.0=z . 

 The temperature θ  is plotted for different values of radiation parameter and Reynolds 
number in Figs.6 and 7 for 5.0=Re , 5.0=Gr , 0.05=ε , 0.0=z  for cooling of 
the plate. It is found that the temperature θ  decreases with increase in radiation 
parameter as well as Reynolds number. In Figs. 8 and 9 we have presented the 
concentration field for several values of Schmidt number and Reynolds number. It is 
found that the concentration field decrease with increase in both Schmidt number and 
Reynolds number. 
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The non-dimensional mass flux at the plate 0=y  in terms of Sherwood number Sh is  

 0=)(= yy

C
Sh

∂
∂

 

 (0),(0)= 10
'' CC ε−−  

 ),(cos(0)(0)= 110 zCC '' πε−−  

 
 Sh 

Re\ S   0.3 0.6  0.66 0.78 

2   1.29 1.62  1.69  1.83 
3   1.45 1.98  2.10  2.33 
4   1.62 2.38  2.54  2.87 
5  1.80 2.79  3.01  3.44 

Table 2: Sherwood number for  5.0=Gr , 0.71=Pr , 0.25=ε , 0.0=z . 
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Figure 2: Primary velocity u  for 

0.25=4,=0.71,=2,=5,=0.3,= εRePrFGmS . 
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Figure 3: Primary velocity u  for 0.25=4,=0.71,=2,=5,=0.3,= εRePrFGrS . 
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Figure 4: Primary velocity u  for 

0.25=4,=0.71,=5,=5,=0.3,= εRePrGrGmS . 
 
 



M.Guria 

94 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y 

u
 

 

 

S=0.3,0.6, 0.66, 0.78

 
Figure 5: Primary velocity u  for 0.25=4,=0.71,=5,=5,=2,= εRePrGrGmF . 
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Figure 6: Temperature profile θ  for 5.0=Gr , 5.0=Re , 0.71=Pr , 0.25=ε . 
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Figure 7: Temperature profile θ  for 5.0=Gr , = 2.0F , 0.71=Pr , 0.25=ε . 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y 

C
 

 

 

S=0.3, 0.6, 0.66, 0.78

 
Figure 8: Variations of concentration field for = 4Re . 
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Figure 9: Variations of concentration field for = 0.3S . 

 
5. Conclusion 
The steady heat and mass transfer flow of viscous incompressible fluid passing through 
the vertical channel has been studied in the presence of radiation. It is found that the 
primary velocity decreases with increase in radiation parameter as well as Schmidt 
number for cooling of the plate. It is also found that with increase in thermal Grashoff 
number and mass Grashoff number the primary velocity increases for cooling of the plate. 
It is observed that the temperature profile decreases with increase in either radiation 
parameter or Reynolds number for cooling of the plate. The Concentration field also 
decrease with the increase of both Schmidt number as well as Reynolds number. 
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