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ABSTRACT
This paper considers the reliability analysis ofmpeting risks model based on
progressive Type-ll censored data with random reatspwhere the failure causes cannot
be fully observed. Assume that the occurrence tifmeach failure mode follows Pareto
distribution, and the number of systems removeehah failure time follows a binomial
distribution. Based on the lifetime data containingsked failure causes, the maximum
likelihood estimations of the unknown parameterds iaatiability function are obtained. In
addition, the asymptotic confidence intervals oé thnknown parameters are also
proposed based on normal approximation to the awmfioplistribution of MLESs. In view
of the shortcomings for failure cause is completelgsked, the maximum likelihood
estimation method fails, the Bayesian estimatidngapameters and credible interval of
the unknown parameters are obtained under they@stric entropy loss function. At
last, some analyses of numerical results undeeréiftt masking levels and removing
probabilities are performed by Monte-Carlo simuaa$i for illustrative purposes. The
results show that the accuracy of the estimati@wsedises with increasing the masking
level and has nothing to do with removing prob#pili

Keywords: Pareto distribution; random removals; competingsrisziith masked failure
causes; reliability analysis; maximum likelihoodtimstion; asymptotic confidence
intervals; P,Q-symmetric entropy loss; Bayesiaimnetton;

1. Introduction

In reliability analysis and lifetime tests, a pratlis failure may be due to several failure
modes, but only the first time and the associatllire mode can be observed. For
example, the failure of a bearing assembly mayttbatable to bearing failures, shaft
failures and so on, but only the first failure tianed failure cause can be recorded. That is
to say, several failure factors compete for thalffailure of the product. It is known as
the competing risks model. Recently, a mass of mgén researches have been
achieved by many scholars. Mao et al. [1] discusbedexact inference of competing
risks model based on generalized Type-l hybrid @ests exponential data. Based on
Cox’s latent failure time model assumptions, Bldttaya et al. [2] analyzed the hybrid
censored competing risks data. Wu et al. [3] stlidiee inference for accelerated
competing failure models based on Type-I progreskixbrid censored Weibull data. Ahn
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et al. [4] discussed the problem of group and witioup variable selection for
competing risks data. More details can refer to Atinet al. [5], Zhang et al. [6], Delord
and Génin [7], and so on.

However, in many situations, the cause of the pebthilure may not be unavailable
to observed because the documentation neededuse ¢gpe identification is lost, or the
cause type is difficult to determine, or the catype detection is expensive to do for each
subject, etc. This type data is known as masked. diais also meaningful to study the
reliability of the product with masked data. Xu arahg [8] analyzed the nonparametric
Bayesian estimation of competing risks problem withsked data. Hyun et al. [9]
studied the proportional hazards model for competisks data with missing cause of
failure. Zheng et al. [10] discussed the problemcofmpeting risks model under
accelerated failure time with missing cause ofufal Li and Yu [11] obtained the
consistent non-parametric maximum likelihood estioma of the joint distribution
function with competing risks data under the depambdnasking and right-censoring
model. Wang and Yu [12], Wang et al. [13] also didny important work on masked
data.

The Pareto distribution is used to model the unkedistribution of personal income
and wealth. It has a long heavy tail and has a wjg@ication in economics, business,
insurance, reliability, engineering, finance andated areas. Many scholars have
discussed the applications of Pareto type disiohatin reliability. Abdel-Ghaly et al.
[14] studied the estimation of the parameters ak®adistribution and the reliability
function in ALT with censoring. Sarhan and El-Goh#t5] developed the maximum
likelihood and Bayes estimators for the parametar$areto reliability model with
masked data. A bivariate Pareto model was intradlbgeSankaran and Kundu [16]. The
latest papers can refer to Fernandez [17], Bounguiget al. [18], and so on.

Considering the above mentioned literatures, ia gaper, we discuss the reliability of
competing risks with masked failure causes baseutagressive Type-Il censored Pareto
data by using maximum likelihood method and Bayesi@thod. The rest of this paper is
organized as follows. In section 2, the model dpion and assumptions are introduced.
In section 3, we derive the maximum likelihood mstiors (MLES) and confidence
intervals of unknown parameters and reliability. skaction 4, the Bayesian estimators
(BEs) and highest posterior density (HPD) credibtervals of unknown parameters and
reliability are obtained. In section 5, a simulatgtudy is performed for illustrate purpose.
Some conclusions are present in section 6.

2. Model description and assumptions

2.1. Model description

Suppose identical systems are put to the test at titne 0, and m failures are going
to be observed. At the first observed time paintr, of the surviving systems are

randomly removed from then-1 working systems. Then, at the second observed time
point t,, r, of the surviving systems are randomly removed frm n-2-r,

working systems, and so on. The test terminatetheattime when thenth failure is
observed at timet,, and the remaining,, :n—m—zi”:ri survivals are all removed.
Then we get the failure daté,,c),i=12,.. m, where t <t,<---<t_  and ¢ takes

any element in the set db,1,2.... k}, ¢ =j,j=12,.. k indicates the failure is caused
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by failure modgj. Here, ¢ =0 denotes that the failure mode of the system cabaot
observed.

2.2. Basic assumptions
Al. The failure of a system occurs only due to onthek competing risks causes, the
lifetimes of which denoted byX,, X,,..., X, which are independent, and the failure time

T of the system is the minimum oX,, X,,..., X, .
A2. The lifetime of thgth competing risks causes denoted l&iy,j =1,2... k, which
follows a Pareto distributiorPa(r,4,) with scale parameter and shape parametet ,

whose cumulative distribution function (CDF) andlmability density function (PDF) are
shown as

F (x7.6)=1-(r/x)" X>7,r>08, >0
g +1 (1)
fj(x;r,Hj):(Hj/r)(r/x)l X>7,71>06, >0
A3. The random removal numbersi =1,2,.. m- Ifollows a binominal distribution
with parametep, namely, (ri [ A ,rl) ~ B(n—m—zi:orj ,p). Here, r, =0.

A4. The failure timeT of the system is independent with the random rexhovymbers.
Ab. The failure causes are independent with maslkingl |
Based on A1-A2, the reliability of system is given
k

R(t):P(min(Xl,Xz,...,Xk)>t):I][l—Fj(t)]. 2

Theorem 1. Under the assumptions Al-A4, the likelihood fuactiof the unknown
parameters when given observed sampte(t,,t,,...,t..) can be expressed as

LO[] |j[h,- (ti)]“°"[|j[1—ﬁ (ti)]]“ M-, 3

where h (= f,(Q/[1-F, (3] is the hazard rate function ph failure causev =Zi”:ri
N =(m-12)(n-m)-Y""(m-i)r, .

Proof. When theith failure time t, is observed, and the associated failure causge is
Then, r of the surviving systems are randomly removed fthmtest. The likelihood

function of the unknown parameters when givencan be expressed as

K K g(cy) K fi
Lioljljl|:fj(ti) I_l {1_F|(ti)}:| [I__l[l_Fj(ti)]j . (4)

1=1)%]

’

Based on A3, (r [r_,,f_, 1)~ B(n—m—zij‘:lorj ,p), SO we have

P= P(R =r R =ry, R = rl) :{n_m_zj:()rj] p' (1— p)n_m_z‘izOri , (5)
r

where, O<r, < n—m—z:lrv,i =1,2;-- m- 1 Then the likelihood function of unknown
parameters witht; and random removalsg is
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K K CICR f i
L=LRO u{f,-(ti) M {1—F.(ti)1} [[ln —F,-(ti)]] Pt p) T (6)

1=1)#]

Then the full likelihood function is

m m ok Kk a(c) K ] ‘
L=[]L O] “{fj(ti) M {1—F,(ti)]} {n[l_ Fj(ti)]] o L p)

1=1 1=1)%

. |j |j[hj (ti)]q(c”{ljj[l—Fj (ti)]]H p" - p)".

The proof holds.

3. Maximum likelihood estimation
In this section, the MLEs ofg, and p are derived. Under progressive Type-II

censoring schemen failures are observed, wheng, j =1,2,.. k failures are caused by

jth failure modes andn, failure causes are masked. Then the equation 48) be
rewritten as follows

m k m
LO {” t;l} 67 (6,+6,+..+6)" D‘J (r /)%l *1)} p" (- p)". 7)
1= j= =

3.1.MLEsof 6;,p andrdiability R
Based on equation (7), the log-likelihood functafrunknown parameters is

m k
logL ==>Int; + > m, logd, +m, log(6, +6, +...+6,)
i=1 =1
+(6?1+6?2+...+6?k)zml(ri +1)log(7 /t)+M Inp+N In(1- p).
i=1

Then, we can get the likelihood equations as falow
dlogL _m, m, u
—~ =14+ 0 4 r+1)(In(r/x))=0,
agj ej 81_*_92_'_“._‘_8'( Zl(l )( ( )ﬂ))
dlogL _M_ N _
oo p 1-p
Solve the above equation, we can obtain

g [”‘ X *1)('”(”‘”}1}{%] e

Based on the invariance of MLESs, the MLERx€an be given by
R(t) = (7 /)34

3.2. Asymptotic confidence intervals
In this subsection, the asymptotic confidence ks for the unknown parameters are
obtained. The asymptotic result can be expresséallaas

(él _el’éz_ezi-“ 'ék _ek ) ﬁ_ p) - Nk+1 (0,| * (‘91 ’92 »ee ﬂk P )):
where 1(4,6,,...,6,,p) is the Fisher information matrix for the parameter
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4,6,,...,6.,p). The elements of matrix are as follows

2 m.
R TR LY
06’ 6" (6,+6,+..+6,)
_ _0%logL _M N

T
I, =1, =0,(i=12,.. k;j=i+ 1. k+ G#j).
Denote vV as the approximate asymptotic variance-covarianatixnfor the MLEs of

unknown parameters,,6,,....6,,p, and V as the estimate o¥ , then

~ ~ ~ ~ ~ -1

Vi Vi Vi1 O I [
V( L 2,...,¢9k,p): - - - = - N N

Vkl Vk,k Vk,k+1 Ikl Ikk Ikk+1

Vk+1,l Vk+1k Vk+1k+1 Ik+ 1,1 - |k+:k Ik+ K+ 1

Therefore, the approximate00(l-a )% confidence intervals forg,é,.,....6,,p are
given by

|:gj - za/Z\M'gj + Za/Z\/\Tjj:| ’ J = 1! 21 1k 1
[ f) - za/2\/ ;k+1,k+1' f’"’ Za/z\/vk+ 1K+ 1] )

where z,,, isthe a/2 percentile of the standard normal distribution.

4. Bayesian estimation
In the analysis of section 3, the MLEs 6€f6,,...,6,,p are obtained. However, we

cannot obtain the MLEs of the unknown parametererwkthe failure causes are
completely masked. In this situation, Bayesian @t an alternative approach.

4.1. Prior and posterior distribution

Suppose the conjugate prior distribution @f is Gamma distributionGa(a,,b,) and
the prior distribution op is an uniform distributionu (0,1), namely,

n(8;1a,b) =07 [ ()] 6" exi{-b,6} .6, > 0

and
1,p0(0,1),
4 ):{0 otherwise
Hence, the joint prior distribution 08,,6,,...,6,,p is
K a 1 -
n(8,,6,...., ek,p):rlbjl[r(ajﬂ g~ exd b6} (8)
L

Combine equation (7) with equation (8), we can iobthe joint density function of
6,0,,....6,p and t =(t,t,,....t.,) by using the multiple expansion theorem,
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k m 6,
f(@l,@z,...ﬂk,p,t)lj z {mb mmb ma(]l—l{(9J_"b;+mj+ai—1|:e—bJ |—J(T/ti)n+1:| }
10 Mgy s j= =

k
;20,37 my; =mg

k _ m
X I_l by [I‘(aj)J 1[ ti'l} p" (L- p)N.
IE 1=
Then, the joint posterior density function @,4,,...,6,,p is
oo o @l
1(6,6,...6,p1)=1(6.8,,.. ,.pt) [ [ [ T(6,6..6 pt)p@ 6. &.

The posterior density functions &,6,.,...,6,,p are
k

> [ " ]H?J‘IB?HQNA)

X m,,,...,M L
My 20,3 my;=my My1s Moy -+ s Mg 1=11%]

(o, |t) = o k i=12.. K,
Cr(A)
Wblzo’ztzl;:l%ﬁmo(nbllmoz ,,,,, mO(JD | A
m(p|t)=[Be(M +1,N+J)]_1 p" -p).
where A =m, +m +a, B =¢e” ﬂ(r/ti)””, C, =(-logB,) ™.

4.2. Bayesian estimation of 8,,p and reliability R
The P, Q-symmetric entropy loss function is defined
L(B.B)=(BI B +(B1B)° -2,
where B is an estimator of3. Denote the prior and posterior distributions 6f are

(B) and (B |data), respectively. Under the P, Q-symmetric entrogss lfunction, the
Bayesian estimation of any functiom(3) of g is given by

P[_h"(B)m(B|data)d B |**°
Q[ h°(B)m(B|data)d B

where B is the support of3.

Based on the subsection 4.1 and the equation @%an get the Bayesian estimators of
8,6,,...,6.,p and reliabilityR,

hy = E[N(B) | data] { ©)

> ( m ] AP ] crm |
D.F(A +P) [ CT(A
120" my; =mg My, Mo, -+, Mg Y I=I1T!*-J' |

D m

%120'274%1 =mo(n-bl, Mozs---»

B~

g”b : =12k,
mﬂ(]Djzr(Aj _Q)l I_l Clr(A)

=11#]j

Q Be(M -Q+1,N+1J)

B

1
R l:PDBe(M +P+1,N +1)}P+Q
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PQ

) [ " m]Eur(Aj)I_lCI(A)P

1=1]#]

2 ( " m]Ejzr(mﬁqr(A)

anzO,ZTzlnbjsz =1#]
_ ~(A +P) _ -(A-Q)
where D, =(-logB,)"“™,D,, = (-logB, )",

E, =[-logBe™  /t)")] " E,,=[-log®e™  /t))] "

4.3. HPD credibleintervals
Given credible levela, the HPD credible interval of parametg can be obtained by

solving the following equation

[ (B datayip=a /2

[ n(p|datayip=1-a 12
Then the HPD credible interval of parametgr is [3,4,].
Replace  the m(3|data) by the posterior  density  functions  of
8,6,,...,6.,p,R respectively, then the HPD credible interval &fé,,...,6,,p,R can be

obtained, namely,
(6,6, 1[0, 6], ...[6 610 Py RLIR, R] -

(10)

5. Smulation study
The progressive Type-Il censored data are genebgtéite following steps:

Sepl. Generatek columns independent uniformly distributed randonmbers from
U(0,1), denoted byy, (i=1,2;-- n;j = 1,2;-- k ).

Sep 2. Substitutet in the equationF™(t)=r/(1-t)"” by vy,, then obtain the
lifetime data of each competing risks=F™(y,), then the lifetime of the system is
t =min(;).

1<j<k

Sep 3. Given random removal probabilify, generatan random removal numbers
such thatr, ~ B(n—m—Z'j:Orj , p).

Sep 4. Based on the characteristic of progressive Tymesoring scheme, generate
m failure lifetime data.

Sep 5. Given masking level (MLY, obtain the failure causes and,,m,...,m, .
Supposen =30 identical systems are placed on the life testh agstem has two failure
modes. The number of failures im=15. Given the values of the parameters
6,=086,=06r=1, a=6a,=5b=7b,=¢&, P=1.05Q=1. In time t,=1.2, the
reliability of system is R(t,) =0.7747. Then the MLEs, Bayesian estimators (BEs), MSEs

of two estimators, the confidence intervals (Cisil &PD credible intervals (HPD-CIs)
of 4.,6,....6,,p,R can be obtained, as well as the 95% credible ‘te\@verage
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probabilities (CPs) of two intervals.

MLs Pare MLEs MSE:¢ Cls CPs

6, 0.9124 0.1901 [0.7856, 1.0154] 0.8420
q=0.2 6, 0.6690 0.1436 [0.5478, 0.7745] 0.8960

p 0.105¢ 0.001¢ [0.0946, 0.127 0.9420

R 0.753¢ 0.005¢ [0.6574, 0.854] 0.921(

g 0.9065 0.2195 [0.7541, 1.0210] 0.8510
q=0.4 8, 0.6656 0.1520 [0.5214, 0.7845] 0.8850

p 0.107: 0.001¢ [0.0941, 0.127] 0.959(

R 0.754¢ 0.005¢ [0.6411, 0.845] 0.917(

6 0.8771 0.2471 [0.7438, 1.1258] 0.8320
q=0.6 6, 0.6712 0.2046 [0.5102, 0.8420] 0.8740

p 0.107: 0.002( [0.0940, 0.127] 0.945(

R 0.757: 0.004¢ [0.6321, 0.86¢] 0.902C

6, — _ _ —
q=0.38 % - o N -

p 0.108: 0.0017 [0.0948. 0.124] 0.952(

R
Table 1: MLEs, MSEs, Cls and CPs i4,4,....,6,,p,R under different MLs whenp=0.1

MLs Parz. BEs MSE:« HPD-Cls CPs

2 0.8013 0.0328 [0.7096, 0.8859] 0.9210
q=0.2 6, 0.5935 0.0295 [0.5124, 0.7011] 0.9100

p 0.113¢ 0.001¢ [0.0971, 0.124] 0.94%0

R 0.816¢ 0.015: [0.7141, 0.921] 0.900

8 0.8109 0.0318 [0.6985, 0.8874] 0.9180
q=04 6, 0.5842 0.0304 [0.5107, 0.7142] 0.9040

p 0.115¢ 0.001¢ [0.0960, 0.12€] 0.954(

R 0.816¢ 0.020( [0.7025, 0.92(] 0.895(

6, 0.8204 0.0297 [0.6952, 0.8812] 0.9120
q=0.6 o, 0.5745 0.0324 [0.5068, 0.7089] 0.9010

p 0.115: 0.002( [0.0956, 0.125] 0.946(

R 0.816: 0.022: [0.7005, 0.91¢] 0.895(

6 0.8313 0.0407 [0.6921, 0.8758] 0.9080
q=0.8 6, 0.5649 0.0363 [0.5024, 0.7002] 0.9050

p 0.116: 0.001" [0.0952, 0.12f] 0.956(

R 0.816: 0.030¢ [0.699¢, 0.936]] 0.891(

Table 2: BEs, MSEs, HPD-CIs and CPs @f.4,.....4,,p,R under different MLs when
p=0.1
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RPs Pare MLEs SE:« Cls CPs

6 0.8810 0.1603 [0.7168, 0.8959] 0.8950
=02 4, 0.6520 0.1299 [0.4985, 0.6981] 0.9010

p 0.213¢ 0.004¢ [0.1965, 0.225] 0.951(

R 0.759¢ 0.004° [0.7054, 0.89%] 0.8€90

6 0.8963 0.1785 [0.7258, 0.9012] 0.9040
p=0.4 6, 0.6502 0.1219 [0.5014, 0.7012] 0.8890

p 0.426¢ 0.011¢ [0.3978, 0.424] 0.945(

R 0.757¢ 0.005: [0.7141, 0.90€] 0.906(

6 0.8676 0.1613 [0.7104, 0.8898] 0.8840
p=06 A 0.6780 0.1417 [0.5124, 0.7087] 0.8900

p 0.624¢ 0.015¢ [0.5925, 0.621]] 0.962(

R 0.758( 0.004¢ [0.7089, .8969 0.9210

6, 0.9057 0.1982 [0.7321, 0.9251] 0.8950
p=0.8 6, 0.6752 0.1499 [0.5098, 0.6984] 0.9000

p 0.820¢ 0.011° [0.7944, 0.824] 0.967(

R 0.753; 0.005¢ [0.7259, 0.91€] 0.918(

Table3: MLEs, MSEs, Cls and CPs &4,4,....,4,,p,R under different RPs whem=0.1

RPs Parz BEs MSE:« HPD-Cls CPs

6, 0.7995 0.0258 [0.7396, 0.8759] 0.9350
p=0.2 o, 0.5926 0.0275 [0.5012, 0.6898] 0.9260

p 0.222¢ 0.004¢ [0.1987, 0.224] 0.968(

R 0.816¢ 0.018: [0.7144, 0.883] 0.911(

6, 0.8002 0.0285 [0.7368, 0.8996] 0.9260
p=0.4 6, 0.5924 0.0312 [0.5211, 0.6985] 0.9180

p 0.419¢ 0.010: [0.3952, 0.43F] 0.956(

R 0.816¢ 0.020¢ [0.7414, 0.905] 0.902(

o, 0.7984 0.0247 [0.7250, 0.8900] 0.9180
p=0.6 6, 0.5944 0.0295 [0.5266, 0.7102] 0.9330

p 0.612¢ 0.012: [0.5910, 0.61€] 0.9610

R 0.816¢ 0.019: [0.7154, 0.88€] 0.927(

6 0.8004 0.0304 [0.7412, 0.9233] 0.9300
=08 6, 0.5940 0.0275 [0.5214, 0.6928] 0.9140

p 0.794¢ 0.008¢ [0.7926, 0.81F] 0.969(

R 0.816¢ 0.021: [0.7358, 0.907] 0.914(

Table4: BEs, MSEs, HPD-CIs and CPs @f,4,....,6,,p,R under different RPs when
q=0.1.

Compare Table 1 with Table 2, we can find the Biesteetter than the MLEs under the
same RP. The MSEs of two methods become largdreamdreasing of MLs. When the
MLs are large enough, the MLEs method cannot obthiihe results, but the Bayesian
method is still effective. Compared Table 3 withblEa4, when the RP becomes larger,
the MLEs and BEs have no significant fluctuatioml@einthe same MLs. In general, the
95% CPs of BEs are larger than the MLEs.
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6. Conclusions

In this paper, we consider the estimation of thenomwn parameters and reliability of the
masked risks model with the progressive Type-liscead Pareto data. The lifetimes of
failure modes follow to Pareto distributions withsame scale parameter but different
shape parameters. Meanwhile, some of the failutesesa are masked. The MLEs,
Bayesian estimators, confidence intervals and HRidilole intervals are obtained. The
simulation study shows that the Bayesian methadoetter than MLE method in small

samples. As the masking level turns to be large MhE method is out of effect, but the

Bayesian method is still effective. As the rand@moved probability becomes larger,
the MLEs and Bayesian estimators have no significhanging. In the future work, the

dependent competing risks with masked failure causay be considered by using
copula function, Marshall-Olkin type distributioremd other methods.
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