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ABSTRACT 
This paper considers the reliability analysis of competing risks model based on 
progressive Type-II censored data with random removals, where the failure causes cannot 
be fully observed. Assume that the occurrence time of each failure mode follows Pareto 
distribution, and the number of systems removed at each failure time follows a binomial 
distribution. Based on the lifetime data containing masked failure causes, the maximum 
likelihood estimations of the unknown parameters and reliability function are obtained. In 
addition, the asymptotic confidence intervals of the unknown parameters are also 
proposed based on normal approximation to the asymptotic distribution of MLEs. In view 
of the shortcomings for failure cause is completely masked, the maximum likelihood 
estimation method fails, the Bayesian estimations of parameters and credible interval of 
the unknown parameters are obtained under the P,Q-symmetric entropy loss function. At 
last, some analyses of numerical results under different masking levels and removing 
probabilities are performed by Monte-Carlo simulations for illustrative purposes. The 
results show that the accuracy of the estimations decreases with increasing the masking 
level and has nothing to do with removing probability. 
 
Keywords: Pareto distribution; random removals; competing risks with masked failure 
causes; reliability analysis; maximum likelihood estimation; asymptotic confidence 
intervals; P,Q-symmetric entropy loss; Bayesian estimation; 
 
1. Introduction 
In reliability analysis and lifetime tests, a product is failure may be due to several failure 
modes, but only the first time and the associated failure mode can be observed. For 
example, the failure of a bearing assembly may be attributable to bearing failures, shaft 
failures and so on, but only the first failure time and failure cause can be recorded. That is 
to say, several failure factors compete for the final failure of the product. It is known as 
the competing risks model. Recently, a mass of meaningful researches have been 
achieved by many scholars. Mao et al. [1] discussed the exact inference of competing 
risks model based on generalized Type-I hybrid censored exponential data. Based on 
Cox’s latent failure time model assumptions, Bhattacharya et al. [2] analyzed the hybrid 
censored competing risks data. Wu et al. [3] studied the inference for accelerated 
competing failure models based on Type-I progressive hybrid censored Weibull data. Ahn 
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et al. [4] discussed the problem of group and within-group variable selection for 
competing risks data. More details can refer to Ahmadi et al. [5], Zhang et al. [6], Delord 
and Génin [7], and so on. 

However, in many situations, the cause of the product failure may not be unavailable 
to observed because the documentation needed for cause type identification is lost, or the 
cause type is difficult to determine, or the cause type detection is expensive to do for each 
subject, etc. This type data is known as masked data. It is also meaningful to study the 
reliability of the product with masked data. Xu and Tang [8] analyzed the nonparametric 
Bayesian estimation of competing risks problem with masked data. Hyun et al. [9] 
studied the proportional hazards model for competing risks data with missing cause of 
failure. Zheng et al. [10] discussed the problem of competing risks model under 
accelerated failure time with missing cause of failure. Li and Yu [11] obtained the 
consistent non-parametric maximum likelihood estimation of the joint distribution 
function with competing risks data under the dependent masking and right-censoring 
model. Wang and Yu [12], Wang et al. [13] also did many important work on masked 
data. 

The Pareto distribution is used to model the unequal distribution of personal income 
and wealth. It has a long heavy tail and has a wide application in economics, business, 
insurance, reliability, engineering, finance and related areas. Many scholars have 
discussed the applications of Pareto type distributions in reliability. Abdel-Ghaly et al. 
[14] studied the estimation of the parameters of Pareto distribution and the reliability 
function in ALT with censoring. Sarhan and El-Gohary [15] developed the maximum 
likelihood and Bayes estimators for the parameters in Pareto reliability model with 
masked data. A bivariate Pareto model was introduced by Sankaran and Kundu [16]. The 
latest papers can refer to Fernández [17], Bourguignon et al. [18], and so on. 
Considering the above mentioned literatures, in this paper, we discuss the reliability of 
competing risks with masked failure causes based on progressive Type-II censored Pareto 
data by using maximum likelihood method and Bayesian method. The rest of this paper is 
organized as follows. In section 2, the model description and assumptions are introduced. 
In section 3, we derive the maximum likelihood estimators (MLEs) and confidence 
intervals of unknown parameters and reliability. In section 4, the Bayesian estimators 
(BEs) and highest posterior density (HPD) credible intervals of unknown parameters and 
reliability are obtained. In section 5, a simulation study is performed for illustrate purpose. 
Some conclusions are present in section 6. 
 
2. Model description and assumptions 
2.1. Model description 
Suppose n identical systems are put to the test at time 0 0t = , and m  failures are going 
to be observed. At the first observed time point 1t , 1r  of the surviving systems are 
randomly removed from the 1n −  working systems. Then, at the second observed time 
point 2t , 2r  of the surviving systems are randomly removed from the 12n r− −  
working systems, and so on. The test terminates at the time when the mth failure is 

observed at time mt  and the remaining 
1

1

m

m ii
r n m r

−

=
= − −∑  survivals are all removed. 

Then we get the failure data ( , ), 1,2, ,i it c i m= … , where  1 2 mt t t≤ ≤ ≤⋯  and ic  takes 
any element in the set of {0,1,2, , }k… , , 1,2, ,ic j j k= = …  indicates the failure is caused 
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by failure mode j. Here, 0ic =  denotes that the failure mode of the system cannot be 
observed. 
 
2.2. Basic assumptions 

A1. The failure of a system occurs only due to one of the k competing risks causes, the 
lifetimes of which denoted by 1 2, , , kX X X…  which are independent, and the failure time 
T of the system is the minimum of 1 2, , , kX X X… . 

A2. The lifetime of the jth competing risks causes denoted by , 1, 2, ,jX j k= … , which 

follows a Pareto distribution ( , )jPa τ θ  with scale parameter τ  and shape parameter jθ , 

whose cumulative distribution function (CDF) and probability density function (PDF) are 
shown as 

( ) ( )
( ) ( )( ) 1

; , 1 / , , 0, 0

; , / / , , 0, 0

j

j

j j j

j j j j

F x x x

f x x x

θ

θ

τ θ τ τ τ θ

τ θ θ τ τ τ τ θ+

= − > > >

= > > >
                             (1) 

A3. The random removal numbers , 1,2, , 1ir i m= −… follows a binominal distribution 

with parameter p, namely, ( ) 1

1 2 1 0
| , , , ( , )

i

i i i jj
r r r r B n m r p

−
− − =

− −∑⋯ ∼ . Here, 0 0r = . 

A4. The failure time T of the system is independent with the random removal numbers. 
A5. The failure causes are independent with masking level. 

Based on A1-A2, the reliability of system is given by 

1 2
1

( ) (min( , , , ) ) [1 ( )]
k

k j
j

R t P X X X t F t
=

= > = −∏… .                               (2) 

Theorem 1. Under the assumptions A1-A4, the likelihood function of the unknown 
parameters when given observed sample 1 2( , , , )mt t t=t …  can be expressed as  

1
( )

1 1 1

( ) [1 ( )] (1 )
i

i j

r
m k kc M N

j i j i
i j j

L h t F t p p
δ

+

= = =

 
 ∝ − −  

 
∏∏ ∏ ,                            (3) 

where ( ) ( ) / [1 ( )]j j jh f F⋅ = ⋅ − ⋅  is the hazard rate function of jth failure cause,
1

1

m

i i
M r

−

=
=∑ ，

( )( ) ( )1

1
1

m

ii
N m n m m i r

−

=
= − − − −∑ . 

Proof. When the ith failure time it  is observed, and the associated failure cause is j. 
Then, ir  of the surviving systems are randomly removed from the test. The likelihood 
function of the unknown parameters when given it  can be expressed as 

( )

0
1 1, 1

( ) {1 ( )} [1 ( )]
i j ic r

k k k

i j i l i j i
j l l j j

L f t F t F t

δ

= = ≠ =

   
∝ − −  

   
∏ ∏ ∏ .                           (4) 

Based on A3, ( ) 1

1 2 1 0
| , , , ( , )

i

i i i jj
r r r r B n m r p

−
− − =

− −∑⋯ ∼ , so we have 

( ) ( ) 0

1

0
1 1 1 1| , , 1

i
ji j

i
n m rj rj

i i i i i

i

n m r
P P R r R r R r p p

r
=

−
− −=

− −

 − − ∑ = = = = = −
 
 

∑
⋯ ,           (5) 

where, 
1

1
0 , 1,2, , 1

i

i vv
r n m r i m

−

=
≤ ≤ − − = −∑ ⋯ . Then the likelihood function of unknown 

parameters with it  and random removals ir  is 
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( ) 0

( )

0
1 1, 1

( ) {1 ( )] [1 ( )] 1
i j i

i
ji j

c r
k k k

n m rr
i i i j i l i j i

j l l j j

L L P f t F t F t p p

δ

=
− −

= = ≠ =

    ∑= ∝ − − −  
   

∏ ∏ ∏ .         (6) 

Then the full likelihood function is 

( ) 0

( )

1 1 1 1, 1

1
( )

1 1 1

( ) {1 ( )] [1 ( )] 1

( ) [1 ( )] (1 ) .

i j i
i

ji j

i

i j

c r
m m k k k

n m rr
i j i l i j i

i i j l l j j

r
m k k

c M N
j i j i

i j j

L L f t F t F t p p

h t F t p p

δ

δ

=
− −

= = = = ≠ =

+

= = =

    ∑= ∝ − − −  
   

 
 ∝ − −  

 

∏ ∏∏ ∏ ∏

∏∏ ∏
  

The proof holds. 
 
3. Maximum likelihood estimation 
In this section, the MLEs of jθ  and p  are derived. Under progressive Type-II 

censoring scheme, m failures are observed, where , 1, 2, ,jm j k= …  failures are caused by 

jth failure modes and 0m  failure causes are masked. Then the equation (3) can be 
rewritten as follows 

( ) ( )( )( )0 1 2 11
1 2

1 1 1

/ (1 ) .k ij

m k m
m rm M N

i j k i
i j i

L t t p p
θ θ θθ θ θ θ τ + + + +−

= = =

   ∝ + + + −   
   
∏ ∏ ∏ …

…           (7) 

 
3.1. MLEs of jθ , p  and reliability R 

Based on equation (7), the log-likelihood function of unknown parameters is 

( )

( ) ( ) ( ) ( )

0 1 2
1 1

1 2
1

log ln log log

1 log / ln ln 1 .

m k

i j j k
i j

m

k i i
i

L t m m

r t M p N p

θ θ θ θ

θ θ θ τ

= =

=

= − + + + + +

+ + + + + + + −

∑ ∑

∑

…

…

  

Then, we can get the likelihood equations as follows 

( ) ( )( )0

11 2

log
1 ln / 0,

log
0,

1

m
j

i i
ij j k

m mL
r x

L M N

p p p

τ
θ θ θ θ θ =

∂ = + + + = ∂ + + +


∂ = − = ∂ −

∑
…

  

Solve the above equation, we can obtain 

( ) ( )( )
1

0

1 1 2

ˆ ˆ1 ln / , .
m

j j i i
i k

m M
m r x p

m m m M N
θ τ

−

=

    = − + =     + + + +     
∑

…
 

Based on the invariance of MLEs, the MLE of R can be given by 
1 2
ˆ ˆ ˆˆ ( ) ( / ) kR t t θ θ θτ + + += … . 

 
3.2. Asymptotic confidence intervals 
In this subsection, the asymptotic confidence intervals for the unknown parameters are 
obtained. The asymptotic result can be expressed as follows 

1
1 1 2 2 1 1 2
ˆ ˆ ˆ ˆ( , , , , ) ( , ( , , , , ))k k k kp p N pθ θ θ θ θ θ θ θ θ−

+− − − − → 0 I… … , 
where 1 2( , , , , )k pθ θ θI …  is the Fisher information matrix for the parameters 
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1 2( , , , , )k pθ θ θ… . The elements of matrix I  are as follows 
2

0
2 2 2

1 2

2

1, 1 2 2 2

log
, 1,2, , ,

( )

log
+ ,

(1 )

0, ( 1,2, , ; 1, , 1; ).

j
jj

j j k

j j

ij ji

m mL
I j k

L M N
I

p p p

I I i k j i k i j

θ θ θ θ θ

+ +

∂= − = + =
∂ + + +

∂= − =
∂ −

= = = = + + ≠

…
…

… …

 

Denote V  as the approximate asymptotic variance-covariance matrix for the MLEs of 
unknown parameters 1 2, , , ,k pθ θ θ… , and V̂  as the estimate of V , then 

( )

1

11 1 1, 1 11 1 1, 1

1 2

1 , , 1 1 , , 1

1,1 1, 1, 1 1,1 1, 1, 1

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ, , , , ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

k k k k

k

k k k k k k k k k k

k k k k k k k k k k

V V V I I I

V p
V V V I I I

V V V I I I

θ θ θ

−

+ +

+ +

+ + + + + + + +

   
   
   = =   
   
   
   

… …

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
…

… …

… …

. 

Therefore, the approximate 100(1 )%α−  confidence intervals for 1 2, , , ,k pθ θ θ…  are 
given by 

/ 2 /2

/2 1, 1 /2 1, 1

ˆ ˆˆ ˆ, , 1,2, , ,

ˆ ˆˆ ˆ, ,

j jj j jj

k k k k

z V z V j k

p z V p z V

α α

α α

θ θ

+ + + +

 − + =  

 − +  

⋯

 

where /2zα  is the / 2α  percentile of the standard normal distribution. 
 
4. Bayesian estimation 
In the analysis of section 3, the MLEs of 1 2, , , ,k pθ θ θ…  are obtained. However, we 
cannot obtain the MLEs of the unknown parameters when the failure causes are 
completely masked. In this situation, Bayesian method is an alternative approach.  

4.1. Prior and posterior distribution 

Suppose the conjugate prior distribution of jθ  is Gamma distribution ( , )j jGa a b  and 

the prior distribution of p is an uniform distribution (0,1)U , namely, 

( ) ( ) { }1 1| , exp , 0,j ja a

j j j j j j j j ja b b a bπ θ θ θ θ
− − = Γ − >   

and 

( ) 1, (0,1),

0,otherwise

p
pπ

∈
= 
 .

 

Hence, the joint prior distribution of 1 2, , , ,k pθ θ θ…  is 

( ) ( ) { }1 1

1 2
1

, , , , exp .j j

k
a a

k j j j j j
j

p b a bπ θ θ θ θ θ
− −

=

 = Γ − ∏…                            (8) 

Combine equation (7) with equation (8), we can obtain the joint density function of 

1 2, , , ,k pθ θ θ…  and 1 2( , , , )mt t t=t …  by using the multiple expansion theorem, 
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( ) ( )0

0 0 01

110
1 2

1 101 02 00,

1 1

1 1

, , , , , /
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( ) (1 ) .

j

ij j j j

k
j jj

j

k m
rm m a b

k j i
j ikm m m

k m
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j j i
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m
f p e t

m m m

b a t p p

θ

θ θ θ θ τ
=

++ + − −

= =≥ =

− −

= =

     ∝     
     ∑

 
 × Γ −  

 

∑ ∏ ∏

∏ ∏

t…
…

 

Then, the joint posterior density function of 1 2, , , ,k pθ θ θ…  is 

( ) ( ) ( )1

1 2 1 2 1 2 1 20 0 0
, , , , | , , , , , / , , , , , d d d dk k k kf p f p f p pθ θ θ θ θ θ θ θ θ θ θ θ

∞ ∞
= ∫ ∫ ∫t t t… … ⋯ … ⋯ . 

The posterior density functions of 1 2, , , ,k pθ θ θ…  are 

( ) ( )

0 0 01

0 0 01

10

1,01 02 00,

0

101 02 00,

1

( )
, , ,

( | ) , 1,2, , ,

( )
, , ,

| 1, 1 (1 ) .

j j

k
j jj

k
j jj

k
A

j j l l
l l jkm m m

j k

l l
lkm m m

M N

m
B C A

m m m
j k

m
C A

m m m

p Be M N p p

θθ

π θ

π

=

=

−

= ≠≥ =

=≥ =

−

 
Γ 

 ∑= =
 

Γ 
 ∑

= + + −  

∑ ∏

∑ ∏
t

t

…

…

…

  

where 0j j j jA m m a= + + , ( ) 1

1

/ ij

m
rb

j i
i

B e tτ +−

=

= ∏ , ( )log
jA

j jC B
−

= − . 

4.2. Bayesian estimation of jθ , p  and reliability R 

The P, Q-symmetric entropy loss function is defined as 
ˆ ˆ ˆ( , ) ( / ) +( / ) 2P QL β β β β β β= − , 

where β̂  is an estimator of β . Denote the prior and posterior distributions of β  are 

( )π β  and ( | )dataπ β , respectively. Under the P, Q-symmetric entropy loss function, the 
Bayesian estimation of any function ( )h β  of β  is given by 

1

( ) ( | )
ˆ [ ( ) | ]

( ) ( | )

P P Q

B Q

P h data d
h E h data

Q h data d

β π β β
β

β π β β

+

−

 
 = =
 
 

∫
∫
B

B

,                           (9) 

where B  is the support of β . 
Based on the subsection 4.1 and the equation (9), we can get the Bayesian estimators of  

1 2, , , ,k pθ θ θ…  and reliability R,  

( )
( )

0 0 01

0 0 01

1

0
1

1,01 02 00,

0
2

1,01 02 00,

( ) ( )
, , ,

ˆ , 1,2, , ,

( ) ( )
, , ,

1, 1
ˆ

1, 1

k
j jj

k
j jj

k P Q

j j l l
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j j l l
l l jkm m m

B

m
D A P C A

m m m
P

j k
mQ

D A Q C A
m m m

Be M P NP
p

Q Be M Q N

θ =

=

+

= ≠≥ =

= ≠≥ =

  
Γ + Γ  

  ∑= = 
  Γ − Γ  
 ∑  

 + + +
= ⋅ − + +

∑ ∏

∑ ∏

…

…

…

1

,
P Q+


 

 



Reliability Analysis of Competing Risks …Random Removals 
 

7 

0 0 01

0 0 01

1

0
1

1,01 02 00,

1 0
2

1,01 02 00,

( ) ( )
, , ,
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where ( ) ( )

1 2( log ) , ( log ) ,j jA P A Q

j j j jD B D B− + − −= − = −  

1 1
1 1 2 1log( ( / ) ) , log( ( / ) )

j jA Ab bP Q
j jE B e t E B e tτ τ

− −− − −   = − = −    . 

 
4.3. HPD credible intervals 
Given credible level α , the HPD credible interval of parameter β  can be obtained by 
solving the following equation 
 

( | ) / 2

( | ) 1 / 2

L

U

data d

data d

β

β

π β β α

π β β α
−∞

−∞

 =

 = −


∫

∫
                                            (10) 

Then the HPD credible interval of parameter β  is [ , ]L Uβ β . 
Replace the ( | )dataπ β  by the posterior density functions of 

1 2, , , , ,k p Rθ θ θ… ,respectively, then the HPD credible interval of 1 2, , , , ,k p Rθ θ θ…  can be 
obtained, namely, 

1 1 2 2[ , ],[ , ], ,[ , ],[ , ],[ , ]L U L U kL kU L U L Up p R Rθ θ θ θ θ θ… . 
 
5. Simulation study 
The progressive Type-II censored data are generated by the following steps: 

Step1. Generate k columns independent uniformly distributed random numbers from 
(0,1)U , denoted by ( 1, 2, , ; 1, 2, , )ijy i n j k= =⋯ ⋯ . 

Step 2. Substitute t  in  the equation 1 1/( ) / (1 )F t t θτ− = −  by ijy , then obtain the 

lifetime data of each competing risks 1( )ij ijt F y−= , then the lifetime of the system is 

1
min( )i ij

j k
t t

≤ ≤
= . 

Step 3. Given random removal probability p, generate m random removal numbers 

such that ( )1

0
,

i

i jj
r B n m r p

−

=
− −∑∼ . 

Step 4. Based on the characteristic of progressive Type-II censoring scheme, generate 
m failure lifetime data. 

Step 5. Given masking level (ML) q, obtain the failure causes and 0 1, , , km m m… . 
Suppose 30n =  identical systems are placed on the life test, each system has two failure 
modes. The number of failures is 15m = . Given the values of the parameters 

1 20.8 0.6 1θ θ τ= = =, , , 1 2 1 26, 5, 7, 8a a b b= = = = , 1.05, 1P Q= = . In time 0 1.2t = , the 

reliability of system is 0( ) 0.7747R t = . Then the MLEs, Bayesian estimators (BEs), MSEs 
of two estimators, the confidence intervals (CIs) and HPD credible intervals (HPD-CIs) 
of 1 2, , , , ,k p Rθ θ θ…  can be obtained, as well as the 95% credible level’s coverage 
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probabilities (CPs) of two intervals. 
 

MLs Para. MLEs MSEs CIs CPs 

0.2q =  

1θ  0.9124 0.1901 [0.7856, 1.0154] 0.8420 

2θ  0.6690 0.1436 [0.5478, 0.7745] 0.8960 
p  0.1055 0.0019 [0.0946, 0.1231] 0.9420 
R  0.7535 0.0054 [0.6574, 0.8541] 0.9210 

0.4q =  

1θ  0.9065 0.2195 [0.7541, 1.0210] 0.8510 

2θ  0.6656 0.1520 [0.5214, 0.7845] 0.8850 
p  0.1073 0.0018 [0.0941, 0.1228] 0.9590 
R  0.7548 0.0054 [0.6411, 0.8452] 0.9170 

0.6q =  

1θ  0.8771 0.2471 [0.7438, 1.1258] 0.8320 

2θ  0.6712 0.2046 [0.5102, 0.8420] 0.8740 
p  0.1072 0.0020 [0.0940, 0.1235] 0.9450 
R  0.7574 0.0048 [0.6321, 0.8698] 0.9020 

0.8q =  

1θ  — — — — 

2θ  — — — — 
p  0.1081 0.0017 [0.0948. 0.1245] 0.9520 
R  — — — — 

Table 1: MLEs, MSEs, CIs and CPs of 1 2, , , , ,k p Rθ θ θ…  under different MLs when 0.1p =  
 

MLs Para. BEs MSEs HPD-CIs CPs 

0.2q =  

1θ  0.8013 0.0328 [0.7096, 0.8859] 0.9210 

2θ  0.5935 0.0295 [0.5124, 0.7011] 0.9100 
p  0.1136 0.0019 [0.0971, 0.1249] 0.9450 
R  0.8165 0.0151 [0.7141, 0.9210] 0.9020 

0.4q =  

1θ  0.8109 0.0318 [0.6985, 0.8874] 0.9180 

2θ  0.5842 0.0304 [0.5107, 0.7142] 0.9040 
p  0.1155 0.0018 [0.0960, 0.1265] 0.9540 
R  0.8165 0.0200 [0.7025, 0.9200] 0.8950 

0.6q =  

1θ  0.8204 0.0297 [0.6952, 0.8812] 0.9120 

2θ  0.5745 0.0324 [0.5068, 0.7089] 0.9010 
p  0.1153 0.0020 [0.0956, 0.1256] 0.9460 
R  0.8163 0.0221 [0.7005, 0.9187] 0.8950 

0.8q =  

1θ  0.8313 0.0407 [0.6921, 0.8758] 0.9080 

2θ  0.5649 0.0363 [0.5024, 0.7002] 0.9050 
p  0.1162 0.0017 [0.0952, 0.1258] 0.9560 
R  0.8163 0.0305 [0.6995, 0.9365] 0.8910 

Table 2: BEs, MSEs, HPD-CIs and CPs of 1 2, , , , ,k p Rθ θ θ…  under different MLs when 
0.1p =  
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RPs Para. MLEs SEs CIs CPs 

0.2p =  

1θ  0.8810 0.1603 [0.7168, 0.8959] 0.8950 

2θ  0.6520 0.1299 [0.4985, 0.6981] 0.9010 
p  0.2138 0.0049 [0.1965, 0.2257] 0.9510 
R  0.7595 0.0047 [0.7054, 0.8954] 0.8990 

0.4p =  

1θ  0.8963 0.1785 [0.7258, 0.9012] 0.9040 

2θ  0.6502 0.1219 [0.5014, 0.7012] 0.8890 
p  0.4264 0.0115 [0.3978, 0.4241] 0.9450 
R  0.7579 0.0051 [0.7141, 0.9085] 0.9060 

0.6p =  

1θ  0.8676 0.1613 [0.7104, 0.8898] 0.8840 

2θ  0.6780 0.1417 [0.5124, 0.7087] 0.8900 
p  0.6246 0.0154 [0.5925, 0.6214] 0.9620 
R  0.7580 0.0049 [0.7089, 0.8969] 0.9210 

0.8p =  

1θ  0.9057 0.1982 [0.7321, 0.9251] 0.8950 

2θ  0.6752 0.1499 [0.5098, 0.6984] 0.9000 
p  0.8208 0.0117 [0.7944, 0.8248] 0.9670 
R  0.7537 0.0056 [0.7259, 0.9163] 0.9180 

Table 3: MLEs, MSEs, CIs and CPs of 1 2, , , , ,k p Rθ θ θ…  under different RPs when 0.1q =  
 

RPs Para. BEs MSEs HPD-CIs CPs 

0.2p =  

1θ  0.7995 0.0258 [0.7396, 0.8759] 0.9350 

2θ  0.5926 0.0275 [0.5012, 0.6898] 0.9260 
p  0.2228 0.0048 [0.1987, 0.2248] 0.9680 
R  0.8169 0.0181 [0.7144, 0.8836] 0.9110 

0.4p =  

1θ  0.8002 0.0285 [0.7368, 0.8996] 0.9260 

2θ  0.5924 0.0312 [0.5211, 0.6985] 0.9180 
p  0.4196 0.0101 [0.3952, 0.4358] 0.9560 
R  0.8169 0.0209 [0.7414, 0.9055] 0.9020 

0.6p =  

1θ  0.7984 0.0247 [0.7250, 0.8900] 0.9180 

2θ  0.5944 0.0295 [0.5266, 0.7102] 0.9330 
p  0.6123 0.0123 [0.5910, 0.6198] 0.9610 
R  0.8168 0.0194 [0.7154, 0.8896] 0.9270 

0.8p =  

1θ  0.8004 0.0304 [0.7412, 0.9233] 0.9300 

2θ  0.5940 0.0275 [0.5214, 0.6928] 0.9140 
p  0.7945 0.0086 [0.7926, 0.8150] 0.9690 
R  0.8166 0.0211 [0.7358, 0.9025] 0.9140 

Table 4: BEs, MSEs, HPD-CIs and CPs of 1 2, , , , ,k p Rθ θ θ…  under different RPs when 
0.1q = . 

Compare Table 1 with Table 2, we can find the BEs are better than the MLEs under the 
same RP. The MSEs of two methods become larger as the increasing of MLs. When the 
MLs are large enough, the MLEs method cannot obtained the results, but the Bayesian 
method is still effective. Compared Table 3 with Table 4, when the RP becomes larger, 
the MLEs and BEs have no significant fluctuation under the same MLs. In general, the 
95% CPs of BEs are larger than the MLEs. 
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6. Conclusions 
In this paper, we consider the estimation of the unknown parameters and reliability of the 
masked risks model with the progressive Type-II censored Pareto data. The lifetimes of 
failure modes follow to Pareto distributions with a same scale parameter but different 
shape parameters. Meanwhile, some of the failure causes are masked. The MLEs, 
Bayesian estimators, confidence intervals and HPD credible intervals are obtained. The 
simulation study shows that the Bayesian method is better than MLE method in small 
samples. As the masking level turns to be large, the MLE method is out of effect, but the 
Bayesian method is still effective. As the random removed probability becomes larger, 
the MLEs and Bayesian estimators have no significant changing. In the future work, the 
dependent competing risks with masked failure causes may be considered by using 
copula function, Marshall-Olkin type distributions, and other methods. 
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