2015

OLD

Part I 3-Tier

STATISTICS

PAPER-II

(Honours)

Full Marks: 90

Time: 4 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A (Marks: 30)

- 1. Answer either (a) and (b) or (c) and (d).
 - (a) Prove that for a normal (μ, σ^2) distribution, the mode is μ . Also show that Mean = Median = Mode.

4+4

(b) If two numbers p and q are chosen at random from the set $\{1, 2, 3, ..., 10\}$ with replacement, determine the probability that the roots of the equation $x^2 + px + q = 0$ are real.

(c) Prove that the mode $(\check{\mu})$ for a Poisson distribution having parameter λ is given by :

$$\tilde{\mu} = \begin{cases} [\lambda], & \text{if } \lambda \text{ is not an integer} \\ \lambda - 1 \text{ and } \lambda, & \text{if } \lambda \text{ is an integer}. \end{cases}$$

- (d) A total of n shells are fixed at a target. The probability of the j-th shell hitting the target is p_j , j = 1, 2, ..., n. Assuming that the n firings are n mutually independent trials, find the probability that at least two shells out of n find the target.
- 2. Answer either (a) and (b) or (c) and (d).
 - (a) Prove that the variance of the random variable x having p.d.f.

$$f(x) = {1 \over B(a,b)} x^{a-1} (1-x)^{b-1}, 0 < x < 1, a > 0, b > 0$$

where B(a, b) is the beta distribution is given by

$$\frac{ab}{(a+b+1)(a+b)^2}.$$

(b) A problem in Mathematics is given to (n-1) students whose chances of solving it are respectively

$$\frac{1}{2}$$
, $\frac{1}{3}$, ... $\frac{1}{n}$. What is the probability that the problem

will be solved?

7

(c) Let $\{A_n\}_n$ be a sequence of events of a random experiment E and is monotonic then prove that

$$P\left(\underset{n\to\infty}{Lt} A_n\right) = \underset{n\to\infty}{Lt} P(A_n).$$

(d) The Probability of detecting tuberculosis in X-ray examination of a person suffering from the disease is 1-b. The probability of diagnosing a healthy person as tubercular is 'a'. If the ratio of the tubercular patients to the whole population is C, find the probability that a person is healthy if after examination he is diagnosed as tubercular.

Group-B

3. Answer any five questions:

8×5

(a) If the function $h: \mathbb{R} \to \mathbb{I}$ be continuous and $h(x) \ge 0 \ \forall \ x \in \mathbb{R}$ having mean h(x) of the random variable X then show that for each

$$\epsilon > 0$$
, $P\{h(x) \ge \epsilon\} \le \frac{E\{h(x)\}}{\epsilon}$

provided E(h(x)) exists.

8

(b) If X be a non-negative random variable with finite mean m, prove that $P(X \ge m\alpha) \le \frac{1}{\alpha}$ for any arbitrary $\alpha > 0$.

- (c) Central limit theorem for equal components implies the law of large numbers for equal components Explain.
- (d) If $\{X_n\}$ is a sequence of independent random variables such that each X_i has the same distribution with mean m and standard deviation σ , then prove that

 $\frac{\overline{X} - m}{\sigma / \sqrt{n}}$ is asymptotically normal (0, 1) i.e.

$$\bar{X} \sim N\left(m, \frac{\sigma}{\sqrt{n}}\right)$$
, where $\bar{X} = \frac{\sum X_n}{n}$.

(e) Find the characteristic function of $X_n(t)$ of the continuous random variable X with p.d.f.

$$f_{\mathbf{x}}(\mathbf{x}) = \begin{cases} 1 - |\mathbf{x}| & \text{if } |\mathbf{x}| < 1\\ 0 & \text{elsewhere} \end{cases}$$

- (f) What do you mean by interpolation? Establish Lagrange's interpolation formula. 2+6
- (g) What do you mean by Numerical integration? Establish Trapezoidal rule for numerical integration. 2+6
- (h) Derive the marginal distributions of a bivariate normal distribution. Also derive the moment generating function of the distribution.

3+5

(i)	What do y	ou me	an by	time-	series	anal	ysis ?	Give	e the
	additive a	nd mu	ıltiplic	ative	model	of th	ne tin	ie se	ries.
								2+	3+3

(j) What do you mean by a 'Consumer Price Index'? Explain different types of price index numbers with applications.

(a) What are the importance of Newton's forward and

Group-C

backward interpolation formula?

(p)	What are the geometrical significance of Simpson	1'8
	$\frac{1}{3}$ rd rule of numerical integration?	4
(c).	Find the error terms of the numerical iteration method for finding the solution of a quadrate equation.	
(d)	What is the errors of Index numbers?	4
(e)	Make a comparative study of constructing the Chai base and Fixed-base method of pricing index.	
(f)	Write a short note on the functions of CSO for India Statistical System.	ın 4

(g) Explain how the seasonal components of a time series are obtained by ratio-to moving average method.

4. Answer any five questions:

4

4×5

2+2

(h)	What	are	the	uses	of	Pareto	and	Log	nor	mal
	distrib	ution	ıs in	study	ing	income	distri	hutior	. 2	4

(i) What do you mean by Periodogram Analysis? Explain how it is used to obtain cyclical components.

2+2

(j) How are the operators Δ , E, and ∇ related? [The symbols keep their usual meanings.]