NEW

3-Tier

2015

PHYSICS

(Honours)

PAPER-V

(PRACTICAL)

Full Marks: 100

Time: 2×6 Hours

The figures in the margin indicate full Marks.

Perform any one experiment from each group.

Group-A

(Marks: 40)

[Experiment — 30, Laboratory Note Book — 5, Viva Voce — 5]

- 1. Determine the Young's modulus of elasticity for the material of the given bar by the method of flexure. (For two different lengths of the bar).
 - (a) Working formula.

2

(b) Measurements of length, breadth and depth.

1+(1+2)+(1+2)

(c) Load (m) ~ depression (l) data.

, , , , ,

(d) Load - depression graphs and calculation of (m/l).

(e)	Calculation of Y.	1
(f)	Proportional error.	. 2
(g)	Discussion.	2
(h)	Accuracy.	2
аę	termine the modulus of rigidity (η) of the materization wire by dynamical method. (Use two diffinders of known mass).	
(a)	Working formula.	2
(b)	Radii of the two cylinders (two sets for each).	1+4
(c)	Radius of the wire (Five sets of perpendireadings.)	cular 1+5
(d)	Lengths of the suspension wire.	2
(e)	Time period of oscillation.	6
(f)	Calculation.	3
(g)	Proportional error.	2
(h)	Discussion.	2
(i)	Accuracy.	2
rise	termine the surface tension of water by the cap e method and verify Jurin's law. (Use at least ses of different radii).	
(a)	Working formula.	2
(b)	Vernier constant of travelling microscope.	1
(c)	Length of the pointer.	2
(d)	Heights of the liquid columns.	5
(e)	Radii of the tubes (r).	8
(f)	Data for $\frac{1}{r}$ versus effective height (h) graph.	2
(g)	$\frac{1}{r}$ versus h graph and Jurin's law verification.	2+1

3.

 (i) Proportional error. (j) Discussion. (k) Accuracy. 2 4. Determine the coefficient of viscosity by capillary flow method. (a) Working formula. (b) Length of the capillary tube. (c) Radius of the capillary tube (at its two ends measured by a travelling microscope). (d) Temperature of water. (e) Data for difference of liquid levels (h) and flow rate (v). [At least five h values]. (f) h ~ v graph. (g) Calculation of η. (h) K. E. correction. (i) Proportional error. (j) Discussion. (k) Accuracy. 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. (b) Diameter and density of the balls. (c) Temperature of the liquid. (d) Determination of the terminal velocity region for the biggest ball. 		(h)	Calculation of surface tension.	1
(i) Discussion. (k) Accuracy. 2 4. Determine the coefficient of viscosity by capillary flow method. (a) Working formula. (b) Length of the capillary tube. (c) Radius of the capillary tube (at its two ends measured by a travelling microscope). (d) Temperature of water. (e) Data for difference of liquid levels (h) and flow rate (v). [At least five h values]. (f) h ~ v graph. (g) Calculation of η. (h) K. E. correction. (i) Proportional error. (j) Discussion. (k) Accuracy. 2 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. (b) Diameter and density of the balls. (c) Temperature of the liquid. (d) Determination of the terminal velocity region for the		(i)	Proportional error.	2
(k) Accuracy. 2 4. Determine the coefficient of viscosity by capillary flow method. (a) Working formula. (b) Length of the capillary tube. (c) Radius of the capillary tube (at its two ends measured by a travelling microscope). (d) Temperature of water. (e) Data for difference of liquid levels (h) and flow rate (v). [At least five h values]. (f) h ~ v graph. (g) Calculation of η. (g) Calculation of η. (i) Proportional error. (i) Proportional error. (j) Discussion. (k) Accuracy. 2 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. (b) Diameter and density of the balls. (c) Temperature of the liquid. (d) Determination of the terminal velocity region for the				2
method. (a) Working formula. (b) Length of the capillary tube. (c) Radius of the capillary tube (at its two ends measured by a travelling microscope). (d) Temperature of water. (e) Data for difference of liquid levels (h) and flow rate (v). [At least five h values]. (f) h ~ v graph. (g) Calculation of η. (h) K. E. correction. (i) Proportional error. (j) Discussion. (k) Accuracy. 2 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. (b) Diameter and density of the balls. (c) Temperature of the liquid. (d) Determination of the terminal velocity region for the		-		2
 (a) Working formation (b) Length of the capillary tube. (c) Radius of the capillary tube (at its two ends measured by a travelling microscope). (d) Temperature of water. (e) Data for difference of liquid levels (h) and flow rate (v). [At least five h values]. (f) h ~ v graph. (g) Calculation of η. (g) Calculation of η. (i) Proportional error. (j) Discussion. (k) Accuracy. 2 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. (b) Diameter and density of the balls. (c) Temperature of the liquid. (d) Determination of the terminal velocity region for the 	4.			ry flow
 (c) Radius of the capillary tube (at its two ends measured by a travelling microscope). 1+3 (d) Temperature of water. 1 (e) Data for difference of liquid levels (h) and flow rate (v). [At least five h values]. 10 (f) h ~ v graph. 3 (g) Calculation of η. 2 (h) K. E. correction. 1 (i) Proportional error. 2 (j) Discussion. 2 (k) Accuracy. 2 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. 2 (b) Diameter and density of the balls. 4+3 (c) Temperature of the liquid. 1 (d) Determination of the terminal velocity region for the 		(a)	Working formula.	2
by a travelling microscope). (d) Temperature of water. (e) Data for difference of liquid levels (h) and flow rate (v). [At least five h values]. (f) h ~ v graph. (g) Calculation of η. (i) Proportional error. (i) Proportional error. (j) Discussion. (k) Accuracy. 2 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. (b) Diameter and density of the balls. (c) Temperature of the liquid. (d) Determination of the terminal velocity region for the		(b)	Length of the capillary tube.	1
 (e) Data for difference of liquid levels (h) and flow rate (v). [At least five h values]. 10 (f) h ~ v graph. 3 (g) Calculation of η. 2 (h) K. E. correction. 1 (i) Proportional error. 2 (j) Discussion. 2 (k) Accuracy. 2 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. 2 (b) Diameter and density of the balls. 4+3 (c) Temperature of the liquid. 1 (d) Determination of the terminal velocity region for the 		(c)		asured 1+3
 (v). [At least five h values]. (f) h ~ v graph. (g) Calculation of η. (h) K. E. correction. (i) Proportional error. (j) Discussion. (k) Accuracy. 2 (k) Accuracy. 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. (b) Diameter and density of the balls. (c) Temperature of the liquid. (d) Determination of the terminal velocity region for the 		(d)	Temperature of water.	1
 (f) h ~ v graph. (g) Calculation of η. (h) K. E. correction. (i) Proportional error. (j) Discussion. (k) Accuracy. 2 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. (b) Diameter and density of the balls. (c) Temperature of the liquid. (d) Determination of the terminal velocity region for the 		(e)	Data for difference of liquid levels (h) and flo	
 (g) Calculation of η. (h) K. E. correction. (i) Proportional error. (j) Discussion. (k) Accuracy. 2 (k) Accuracy. 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. (b) Diameter and density of the balls. (c) Temperature of the liquid. (d) Determination of the terminal velocity region for the 			(v). [At least five h values].	
(h) K. E. correction. (i) Proportional error. (j) Discussion. (k) Accuracy. 2 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. (b) Diameter and density of the balls. (c) Temperature of the liquid. (d) Determination of the terminal velocity region for the		(f)	h ~ v graph.	
(i) Proportional error. 2 (j) Discussion. 2 (k) Accuracy. 2 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. 2 (b) Diameter and density of the balls. 4+3 (c) Temperature of the liquid. 1 (d) Determination of the terminal velocity region for the		(g)	Calculation of η .	
 (j) Discussion. (k) Accuracy. 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. (b) Diameter and density of the balls. (c) Temperature of the liquid. (d) Determination of the terminal velocity region for the 		(h)		-
(k) Accuracy. 2 5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. 2 (b) Diameter and density of the balls. 4+3 (c) Temperature of the liquid. 1 (d) Determination of the terminal velocity region for the		(i)	And Andrews An	
5. Verify Stoke's law for all of spherical balls of different radii (at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. (b) Diameter and density of the balls. (c) Temperature of the liquid. (d) Determination of the terminal velocity region for the		(j)	Discussion.	
(at least three) through a viscous liquid of known specific gravity and determine the co-efficient of viscosity of the liquid. (a) Theory. (b) Diameter and density of the balls. (c) Temperature of the liquid. (d) Determination of the terminal velocity region for the		(k)	Accuracy.	2
(b) Diameter and density of the balls. 4+3 (c) Temperature of the liquid. 1 (d) Determination of the terminal velocity region for the	5.	(at gra	least three) through a viscous liquid of known s vity and determine the co-efficient of viscosity	specific
(c) Temperature of the liquid. 1 (d) Determination of the terminal velocity region for the		(a)	Theory.	2
(d) Determination of the terminal velocity region for the		(b)	Diameter and density of the balls.	4+3
(d) Determination of the terminal velocity region for the		(c)	Temperature of the liquid.	1
			Determination of the terminal velocity region	

(e)	Determination of terminal velocity (v) with correfor wall effect and end effect.	ection 6+2
(f)	r ² versus v graph to verify Stoke's law.	3+1
(g)	Calculation of η .	2
(h)	Discussion.	2
(i)	Accuracy.	1
ma	determine the horizontal component of the e- gnetic field by magnetometer. [at least three diff sition of bar magnet for each side]	arth's ferent
(a)	Working formula.	3
(b)	Measurement of length and breadth of the bar m by slide calipers (v.c. to be determined). 2	agnet +2+1
(c)	Measurement of mass of bar magnet.	3
(d)	Readings of the deflection magnetometer. (Eight readings for each slide i.e. total sixteen readings for each position of bar magnet])	3×3
(e)	Measurement of time period of oscillation of the magnet.	e bar 3
(f)	Calculations.	3
(g)	Proportional error.	2
(h)	Accuracy.	2
con ind	termine the focal length of a concave length of a concave length of the refraction method and also determine the refraction of the material of the concave lens by meas radius of curvature by a spherometer.	active
(a)	Working formula.	3
(b)	Data for index correction.	1
(c)	Data for focal lengths of the convex lens and the combination (2 sets of data for each).	lens 4+4
(d)	Calculation of focal lengths.	2

6.

(e)	Spherometer constants and radii of curvature concave lens,	of the
(6)		2
(f)		2
	Proportional error.	2
	Discussion.	2
(i)	Accuracy.	
	termine the wavelength of a monochromatic lig wton's ring expt.	ght by
(a)	Working formula.	3
(b)	Spherometer constants and radius of curvat the lens.	ure of 2+3
(c)	Vernier constant of the microscope.	1
(d)	Data for ring diameters (D _n) and calculation (at least eight rings).	of D ² _n 8+2
(e)	Graph of D ² _n vs. n.	3
(f)	Calculation of wavelength using the graph.	2
(g)	Proportional error.	2
(h)	Discussion.	2
(i)	Accuracy.	2
the Det for the	rel and adjust a spectrometer for parallel rays. Me angle of the prism with the help of the spectrometermine the refractive index of the material of the two specified rays and the mean ray. Hence caldispersive power of the material of the prism, wavelength region considered.	meter. prism culate
(a)	Working principle.	3
(b)	Spectrometer constants.	1
(c)	Levelling and adjustment for parallel rays.	3
(d)	Data for angle of the prism.	5
	Direct reading.	2
	20 - 3000	

8.

(f) Minimum deviation for three different colours.	9
(g) Calculation.	3
(h) Discussion.	2
(i) Accuracy.	2
10.00	
10. Study the reverse characteristics of a given Zener dio	de
to find its Zener voltage and a.c. resistance. Also stu the load regulation and line regulation characteristic	dy s.
(a) Theory and Schematic circuit diagram.	4
(b) Circuit implementation. 2+1+	1
(c) Data for V-A characteristic in reverse bias.	3
(d) V-A characteristic curves.	2
(e) Determination of Zener voltage and a.c. resistan	ce
from the graphs.	2
(f) Data for load regulation and line regulation. 3+	3
(g) Load regulation and line regulation curves. 3+	3
(h) Percentage regulation at specified load current.	1
(i) Accuracy.	2
11. Study the regulation characteristics of a bridge rectific without any filter and with two different capacitor filter for a given input. Determine the ripple factor (γ) as percentage regulation in each case.	rs
(a) Working formula and schematic diagram. 2+	2
(b) Circuit implementation.	3
(c) Data for voltage regulation.	6
(d) Voltage regulation curves.	3
(e) Percentage voltage regulation for a specified curren	t.
1	3
(f) Measurement of ripple factor.	9
(g) Discussion on voltage regulation and ripple factor.	2

12.	n-	udy the input and output characteristics of a giv p-n or p-n-p transistor in CE mode to find d.c. a	nd
		e. current gains, output admittan ce and inp pedance.	out
	(a)	Working formula and Schematic circuit diagram.	4
	(b)	Identification of base.	1
	(c)	Circuit implementation.	3
	(d)	Data for input characteristic for one given value V_{CE} .	of 2
	(e)	Input characteristic curve.	2
	(f)	Data for output characteristics with three specifi- base currents.	ed 6
	(g)	Output characteristic curves.	6
	(h)	Determination of β_{dc} , β_{ac} , the output admittance the active region and input impedance.	in 4
	(i)	Accuracy.	2
13.	tric	aw the static and dynamic mutual characteristics of ode valve. Hence find the amplification factor (μ) , attended to the resistance (r_p) and voltage gain (A_v) .	a c.
	(a)	Working formula and schematic circuit diagram.	
			4
	10 D	•	3
	0 10	,	6
			4
	15. (15.)	80 W Michigan (Matter 1997)	6
	(f)	The same and the s	ne 2
	(g)	Calculation of A _v from dynamic characteristics.	1
	(h)	Verification of the relation connecting A_v , μ , r_p are R_L with comments.	1d 2
	(i)	Accuracy.	2

Group-B

(Marks: 50)

(Experiment — 40, Laboratory Note Book — 5,

	Viv	a Voce — 5]	
14.	Det by	termine the thermal conductivity of a bad con- Lees and Chorlton's method.	ductor
	(a)	Working formula.	3
	(b)	Measurements of diameter and thickness (a places) of the disc.	at two 2+6
	(c)	Steady state temperature with initial tempe correction.	rature 4+1
	(d)	Data for cooling curve.	8
	(e)	Drawing of cooling curve.	4
	(f)	Data for Bedford's correction.	2
	(g)	Calculation.	4
	(h)	Proportional error.	2
	(i)	Discussion.	2
	(j)	Accuracy.	2
15.	diff con	librate the given polarimeter for an active soluterent concentrations by volume. Hence find of accentration of a given active solution of the same if determine the specific rotation of the solution.	ut the solute
	(a)	Working formula.	3
	(b)	Vernier constant.	1
	(c)	Data for pure water.	2
	(d)	Preparation of solutions of six differencentrations.	ferent 8
	(e)	Data with solution of known strength for 'C - θ '	graph. 12

	(f)	$C \sim \theta'$ graph.	3
	(g)	Concentration of the given active solution.	3
	(h)	Specific rotation.	2
	(i)	Proportional error.	2
ė	(j)	Discussion.	2
	(k)	Accuracy.	2
16	а	ady the intensity distribution of diffraction par grating by Laser and LDR. Also determi velength of the laser light.	ttern of ne the
	(a)	Theory.	3
	(b)	Spectrometer constant.	1
	(c)	Setting of the grating for normal incidence.	5
2		Measurement of relative intensity with respect central maximum and diffraction angle (upto order).	to the fourth
	(e)	Calculation of wavelength.	2
	(1)	Bar chart for relative intensity distribution.	5
		Discussion.	2
	(h)	Accuracy.	. 2
17.	six poir Hen tem	dy the variation of the thermo e.m.f. 'e perature 't' of the test junction of a thermocoudifferent temperatures (room temperature to it of water), keeping the cold junction in an ice ce obtain the mean thermo-electric power with perature range 40°C to 80°C. Also find the mezing point of a given solid.	boiling bath.
	(a)	Working formula and circuit diagram.	2+2
		Circuit implementation.	3
		Resistance of Potentiometer wire.	6
10	(d)	e' at different temperatures.	15

	(e)	Data for melting / freezing point.	3
	(f)	'e ~ t' curve	3
	(g)	Determination of thermo electric power and meltifreezing point.	ing / 2
	(h)	Proportional error.	2
	(i)	Accuracy.	2
18.	give the of	dy the variation of resistance with temperature en thermister for two given constant voltages (see examiners). Hence find the melting / freezing a given solid. Also find the band gap from rmister characteristics.	et by point
	(a)	Working formula and circuit diagram.	2+2
	100	Circuit implementation.	3
	(c)	Data for thermister characteristics. (two sets for two different voltages.) (at least seven readings for each.)	7×2
	(d)	Recording of thermister current with time during melting / freezing.	4
	(e)	graphs).	3×2 3
	(f)	Drawing of melting / freezing curves.	3
	(g)	Determination of melting / freezing point from two characteristics curves.	2
	(h)	Determination of band gap from two graphics.	2
	(i)	Accuracy.	2
19.	Stu He	ady the growth and decay pattern in dc C-R cince find the time constant of the circuit. Two differentiations of C-R to be studied.	rcuit. Terent
	(a)	Working formula and circuit diagram.	2+2
	30000 30000	Circuit implementation.	3

	(C)	Data for growth and decay for one set	
		combination (at least eight readings for each	15
	(d)	Data for growth and decay for another set combination (at least eight readings for each	of C-R 1). 4+4
	(e)	Drawing of growth and decay curves for C-R combinations in two separate graphs.	or two 4+4
	(f)	Determination of time constants from each.	4
	(g)		nstant.
			3
	(h)	Accuracy.	2
20.	pla	termine the boiling point of a given liquid tinum resistance thermometer.	using
	(a)	Working formula and circuit diagram.	2+2
		Circuit implementation.	3
		Electrical mid point.	2
ē	(d)	Data for resistance of Pt coil at three ditemperatures.	fferent 15
	(e)	Evaluation of ' ρ ' of the bridge wire.	3
		Barometric height and boiling point of water.	
	(p)	Calculation of resistance " 1 and bell	3
	(6)	Calculation of resistance, 'tpt' and boiling poi	nt. 3+1+2
	(h)	Proportional error.	
		Accuracy.	2
	(-,	. Source,	2
21.	thirt	the help of a ballistic galvanometer, determined inductance (M) of the given pair of coils for a seen different inclinations (ϕ) from 0° to w the 'M $\sim \phi$ ' graph.	t least
	(a) \	Working formula and circuit diagram.	2+2
		Circuit implementation.	3

(c)	Period of oscillation.		4
	Measurement of log decrement.	10	4
0.20	Steady deflection.		2
(C)	Ballistic throws for different inclinations.		13
	Calculation of M and 'M $\sim \phi$ ' graph.		2+4
3.55			2
(11)	Proportional error in M at $\phi = 0^{\circ}$.		2
(1)	Accuracy.		2

22. Determine the strength of magnetic field values between the pole pieces of an electromagnet due to different d.c. magnetising currents by a search coil, a ballistic galvanometer and a standard solenoid. Draw the 'I ~ B' curve. (Constants of search coil and solenoid are supplied).

Working formula and circuit diagram.	2+2
	3
	4
	3
Ballistic throws for at least seven	magnetising 14
9603 12-44 K	4
	4
	2
Accuracy.	2
	currents. Calculation of B. 7 ~ B' graph. Discussion.

23. Draw the resonance curve of a circuit containing a capacitor, a resistor and a coil of unknown inductance in series. Calculate the value of inductance from the resonant frequency. Repeat the observations with another resistor. Find the Q factors for both the L-C-R combinations.

	Įα	working formula and circuit diagram.
	100	Circuit implementation.
	(c)	Current versus frequency data for the L-C-combinations.
	(d)	Resonance curves.
v	(e)	Determination of L and Q from resonance curves.
	(f)	Comparison of Q with theoretical values.
	(g)	Data for phasor diagram at resonance for any on L-C-R combination.
	(h)	Phasor diagram at resonance.
	(i)	Discussion.
	(j)	Accuracy.
24.	ste	ady the characteristic of a ballistic galvanometer by ady deflection method and standard capacitor method. Working formulae and circuit diagrams for each method. 4+4
	(b)	Circuit implementations. 2+2
		Period of oscillation.
80		Scale to galvanometer distance.
		Galvanometer resistance by half deflection method. (Data with three current values for a shunt resistance).
	(f)	Calculation of galvanometer constant following steady deflection method.
	(g)	Throw due to capacitor discharge. (Three different voltages to be applied for charging).
	(h)	Log decrement. 4
	(i)	Calculation of galvanometer constant following standard capacitor method.

	(j)	Comparison of galvanometer constant obtained two methods and comments.							
25. Determine the average resistance per unit length (ρ) a bridge wire by Carey Foster's method. Hence determine the given unknown resistance (R). Also determine R with the help of a P.O. box.									
	(a)	Working formula and circuit diagram.	4						
	(b)	Circuit implementation.	3						
*	(c)	Measurement of ρ (5 sets of readings).	1						
	(d)	Measurement of R by Carey Foster's method (5 sets of readings).	1						
	(e)	Measurement of R by P.O. box.	5						
	(f)	Proportional error.	2						
	(g)	Comments on measurements by the two methods.							
	(j)	Accuracy.	2						
26.	res rel	Make a series CR circuit with suitable capacitor and resistances to an a.c. source to study the current-voltage relationship and to study the variation of reactance of the capacitor with frequency of the a.c. sources							
	(a)	Working formula and circuit diagram.	3						
	(b)	Circuit implementation.	2						
22	(c)	Data for I versus V_C graph at least for four inp voltage for each frequency.							
		(Take four frequencies say 50Hz, 100Hz, 150H 200Hz).	4						
	(d)	Draw I ~ V_c graph for four input frequencies as obtain $1/Z_c$ for each case.	nd :3						

		1								
(e)	Draw	7	~	f graph	and	determine	C	from	graph.	3
		40								

(f) Discussion.

(g) Accuracy.

Group-C

(Marks: 10)

(Experiment - 7, Laboratory Note Book & Viva Voce - 3]

Answer one question in Fortran or in C.

1. Write a program to find the maximum among N numbers and verify it for a given set of data.

3+4

2. Write a program to arrange N numbers in ascending order and verify it for a given set of numbers.

3+4

3. Write a program to compute mean, median and mode of a set numbers and verify it for a given set of numbers.

3+4

4. Write a program to compute the sum of a GP series term by term and verify it for a given series.

5. Use origin software to draw a mean graph with given set of data with proper label and scale

5+2

6. Write a program to find the roots of a quadratic equation: $ax^2 + bx + c = 0$ and verify it for given values of a, b and c.

3+4

7. Write down a program to find the area of a circle, given by the equation : $x^2 + y^2 = a^2$ and verify it for given value of a.

NEW

3-Tier

2015

PHYSICS

(Honours)

PAPER-V

(PRACTICAL)

Full Marks: 100

Time: 2×6 Hours

The figures in the margin indicate full Marks.

Instructions to the Examiners.

- 1. At least eleven experimental set-ups to be arranged for each of Group—A & Group—B.
- 2. Second chance of drawing cards may be allowed without deducting marks. However, for third chance, 3 marks for Group—A and 4 marks for Group—B must be deducted.
- 3. At least two readings for each experiment of Group—A & Group—B should be checked and signed by the examiners.
- 4. If working formula of circuit diagram are found wrong before starting the experiment the examinee may be told to make it correct in front of the examiners without penalising. Otherwise, formula and circuit diagram should be supplied with deduction of marks allotted for it.

- 5. If an examinee is provided help for performing an experiment (data recording, making circuit, focussing of optical instruments etc.) then the nature of help provided should be written on the answer script and marks should be deducted accordingly.
- 6. Examiners are to give different set of data for Group—C experiments to different examinees. Each examinee has to take print out of the results of Group—C or to show the results to the examiners. Each examinee may be provided a computer for maximum 45 minutes.
- 7. In Laboratory Note Book, 2 marks for 6-7, 3 marks for 8-10, 4 marks for 11-13 and 5 marks for more than 13 properly signed experiments may be awarded.
 - N.B. The evaluated answer scripts should be sent to the H.E. within one month from the date of completion of the examination.

Official address of H.E.

Dr. Madhusudan Jana Dept of Physics Tamralipta Mahavidyalaya Tamluk - 721636 Mob: 9434170180

Residential address of H.E.

Dr. Madhusudan Jana Padumbasan (Mishra Parha) Tamluk (Near Ashutosh Pry School) Purba Medinipur-721636