2016

PHYSICS

[Honours]

PAPER - IV

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

[OLD SYLLABUS]

GROUP - A

Answer any two questions:

 15×2

(a) State the principle of virtual work of a system of 'n' particles under holonomic constraints and establish d'Alembert's principle.

(b)	If	a	Lagrangia	n do	es i	not	CO	ntain	tii	ne	
	explicitly, show			that	the	to	tal	energy		is	
	CO	nse	erved.		16						4

(c) Use Lagrange's equation to calculate the frequencies of vibration of a double pendulum formed by two equal masses and equal lengths of string.

- 2. (a) Obtain an expression for rotational energy levels of a diatomic molecule and the frequency of rotational spectra. Show that the energy levels are not equally spaced but the frequencies are equally spaced.

 4 + 1
 - (b) "X-ray production is the inverse of photoelectric effect." Justify.
 - (c) What is betatron? Derive the betatron condition for successful acceleration of electrons.
 - (d) Deduce the expression for the energy gained by an electron in a betatron.

2

	3.	(a)	What do you mean by the Quencing of G-M counter? Why is it essential? How is it achieved internally?	4
g F		(b)	What is intermodal dispersion and cross talk in fiber optic communication? How it can be minimized?	4
		(c)	Write down briefly with energy level diagram the working principle of a He-Ne laser.	.4
		(d)	Why population inversion is not possible with only two atomic levels?	3
	4.	(a)	What is Zeeman effect? Explain why normal Zeeman effect occurs only in atoms with even number of electrons.	- 2
		(b)	Draw a neat diagram to illustrate the Zeeman splitting of D_1 and D_2 lines of sodium.	3
. *		(c)	Develop the semi-empirical mass formula discussing the physical basis of each term.	5

(d) Evaluate the temperature at which there is one percent probability that a state with an energy 0.5eV above the Fermi-energy will be occupied by an electron.

GROUP - B

Answer any five questions:

 8×5

3

5. (a) What is canonical transformation? Show that the transformation

$$Q = \tan^{-1} \frac{q}{p}, P = \frac{1}{2}p^2 \sec^2 q$$

is a canonical transformation. Find also the corresponding generating function. 2+2+2

- (b) What are cyclic coordinates? Show that the momenta conjugate to cyclic coordinates are conserved.
- 6. (a) What is the binding energy and packing fraction? Draw the binding energy per nucleon vs. mass number curve and explain the stability of nucleus. 1+1+2+1

- (b) Calculate binding fraction 16_0 . Given $M(^{1}\text{H}) = 1.007825 \ u$, $M(^{1}n) = 1.008665 \ u$, $M(16_0) = 15.994915 \ u$ and $1u = 931.5 \ \text{MeV}$. 3
- 7. What is standing wave in optical resonator? Find out the expression for frequency separation between two consecutive modes. Calculate the number of modes in the wavelength range 2 nm centred about the wavelength 50 nm. The length of the optical resonator is 30 cm. 2+4+2
- 8. (a) What do you mean by acceptance angle and numerical aperture of a step index fiber? Find their expressions. 1+1+3
 - (b) Find the numerical aperature and the acceptance angle of a step index fiber when refractive index of the core is 1.51 and that of material used for cladding is 1.47.
- 9. (a) What do you mean by nuclear fusion? Write down the C-N cycle for the energy generation in stars are also estimate the nuclear energy released in each cycle.
 1+2+1

3

¥1	(o)	Discuss the variation of cosmic ray intensit	y
		with latitude and explain its cause.	
10	• (a)	Imagine a crystalline solid consisting of large number of atoms which vibrate around their mean positions. Construct the partition function of the system. Hence calculate the mean energy $\langle E \rangle$ and specific heat at constant volume C_{ν} . Find out how C_{ν} varies in the high and low temperature limits.	d n e it
0	(b)	Find out how 4 fermions can be distributed in 5 degenerate microstates.	
l1.	·(a)	Describe the working principle of Bainbridge's mass spectrograph. How is the nuclear mass determined using the spectrograph.	5 5
	(b)	What is the origin of γ -decay?	2
2.	(a)	What is Raman effect? Why are stoke's lines brighter than antistoke's lines?	+ 2

- (b) Consider the following reactions. Consider the conservation laws and state why they are allowed or why they are not.
 - (i) $p + e^- \rightarrow n + v_e$ allowed
 - (ii) $p + p^- \rightarrow \Pi^+ + e^-$ not allowed
 - (iii) $e^+ + e^- \rightarrow p^+ + p^-$ not allowed
 - (iv) $\Pi + p \rightarrow n + \Pi^{\circ}$ allowed

GROUP - C

Answer any five questions:

 4×5

- 13. Suppose F and G are two arbitrary functions of Canonical variables p's and q's prove that the Poisson bracket of them is invariant under canonical transformation.
- 14. (a) What is ionization chamber?
 - (b) What is Pirani gauge? How does it work? 1 +2

1

- 15. Deduce Boltzman's entropy probability relation $S = k \log_e \Omega(E)$ where S is entropy, $\Omega(E)$ is the number of microstates in the energy interval between E and $E + \delta E$ and k is a constant.
- 16. Explain Giger-Nuttal law relating to the range of particle is α-ray disintegration and half-life period.
- 17. Discuss the success and limitations of the single particle shell model.
- 18. Show that average energy of a conduction electron in a metal at T=0 is $\langle F_0 \rangle = \frac{3}{5} E_{F_0}$, where E_{F_0} is the Fermi energy at T=0.
- 19. Why homonuclear molecules (H₂, N₂, O₂ etc) do not show rotational spectra?
- 20. What is population inversion? How is the population inversion achieved in He-Ne Laser?

 2+2