2016

PHYSICS

[Honours]

PAPER - II

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

[NEW SYLLABUS]

GROUP - A

Answer any two questions:

15 × 2

 (a) If instead of the dyne, the unit force is defined as the gravitational force between

(Turn Over)

two particles each of mass 1 gm placed 1 cm apart, then obtain the expression of Newton's second law of force.

2

- (b) (i) What physical entity remain conserved for a particle moving in a circular orbit and why?
 - (ii) Obtain the radial and transverse components of velocities and acceleration of a particle moving in a plane with the polar coordinates defined as $r = A \sin Bt$ and $\theta = Ct$, where A, B and C are constants.
- (c) Show that the velocity dependent force is not conservative.
- (d) A particle moves in a field of force given by $F_x = yz (1 - 2\phi)$, $F_y = zx (1 - 2\phi)$ and $F_z = xy (1 - 2\phi)$ with $\phi(x, y, z) = xyz$. Verify whether the force is conservative or not. Find the potential responsible for such force field.

2.	(a) (i) Prove that the position of the centre	
	of mass is irrespective of the origin of chosen coordinate system.	3
	(ii) What is second moment of mass? Justify whether it is a scalar quantity or not. 1+	1
	(b) Obtain the expression of angular momentum of a system of particles with appropriate physical explanations.	4
	(c) (i) Derive Newton's law of Gravitation from Kepler's laws.	4
	(ii) Distinguish between geosynchronous and geostationary satellites.	2
3.	(a) Find out the expression of kinetic pressure for a two dimensional ideal gas with proper assumptions.	5
	(b) A narrow molecular beam makes it way into a vessel filled with a gas under low pressure. Find the mean free path of the molecules if the beam intensity decreases n-fold over a distance L.	3

UG/L/PHS/H/II/16(New)

(Turn Over)

- (c) Density of Helium gas at STP is 178 kg/m^3 . Estimate the size of Helium atom if its mean free path at STP is 285 nm and its mass is $6 \times 10^{-27} \text{ kg}$.
- (d) An ideal gas in a cylinder is enclosed by a piston of cross-section α . The atmospheric pressure P_0 is constant. An external force lifts the piston from a height h_1 to h_2 adiabatically. Find the work done by the applied force on the gas.
- (a) Derive the expression of potential at a point outside of a linear quadrupole. How does the field vary with distance for the derived potential.
 - (b) Assuming a simple classical model of an atom, derive an expression for the induced dipole moment, and hence, for its polarizability.
 - (c) Find the field inside a solenoid of length L having N turns uniformly wound round a cylinder of radius r and carrying current I. 4

(d)	Distinguish between the laws of e	een the laws of electrostatics	
	and magnetostatics in general.	**	•

GROUP - B

VIIIDMOI	any	moduc	buous.	

- 5. (a) Briefly discuss the principle of equivalence. 2
 - (b) (i) Obtain the equation of motion of rotating earth to discuss the evolution of centrifugal and coriolis forces.
 - (ii) How does the coriolis force affect the wind motion in northern and southern hemispheres?
 - 6. (a) Distinguish between Laboratory and centre -of-mass frames of reference. 1+1
 - (b) Show that for a system of particles, the angular momentum about a fixed point is equal to that of a single particle of total mass Σm, situated at the centre of mass plus the angular momentum of the system about the centre of mass.

3

 8×5

(c) Show that the acceleration \vec{a} of a particle which travels along a space curve with velocity \vec{v} is given by

$$\vec{a} = \frac{dv}{dt}\hat{T} + \frac{v^2}{\rho}\hat{N},$$

where \hat{T} and \hat{N} are unit tangent vector and unit principal normal vector respectively, ρ is the radius of curvature.

- 7. (a) Find the distance travelled by the axis of a solid circular cylinder of radius r and mass m after it has rolled down from rest without slipping for time t on a plane inclined at an angle θ with the horizontal.
 - (b) How would you distinguish a solid sphere from a thick spherical shell of identical outer radius and mass?
- 8. (a) With the proper assumptions derive the interrelation between thermal conductivity and coefficient of viscosity.

3

- (b) Discuss how does the mean free path change with temperature at low pressure condition?
- 9. (a) Define thermometric conductivity and thermal resistivity. 2+2
 - (b) A number of slaps n each of area A, but of different materials and thickness are placed side by side in contact. If the temperature of the composed face of the first slab is θ_1 and that of the exposed face of the n-th slab is θ_{n+1} , show that, in steady state, the heat conducted per second per unit area is

$$\frac{1}{A}\frac{dQ}{dt} = U(\theta_1 - \theta_{n-1}).$$

U is the over all coefficient of heat transfer and is given by

$$\frac{1}{U} = \frac{x_1}{K_1} + \frac{x_2}{K_2} + \dots + \frac{x_n}{K_n}$$

wher x_i is the thickness of the *i*th slab of conductivity K_i .

- 10. (a) State and establish Clausius' theorem for cyclic process. Show that this theorem leads to a 'state function' called entropy. 3+3
 - (b) Under constant atmospheric pressure 100 kg of water at 27 °C is converted into superheated steam at 200 °C, Compute the change in entropy. Given: specific heat of water = 4180 J/kg⁻¹/K specific heat of water vapour at T Kelvin is given by (1670 + 0.49 T) J kg⁻¹/K and latent heat of vaporisation = 23 × 10⁵ J kg⁻¹.
- 11. (a) For a conducting sphere lying in a uniform electric field, find out the potential and field at the vicinity of the sphere. Hences obtain the induced charge density.

 3 + 2 + 1
 - (b) When a neutral dielectric is polarized, the polarization volume and surface charges appear. Show that the net charge remains zero.
- 12. (a) Define magnetomotive force and reluctance in a magnetic circuit.

- (b) The volume of the core of a transformer is 1000 cm³. It is fed with a.c. of 50 Hz. If the loss of energy due to hysteresis per hour is 36 Joules, calculate the area of B-H loop.
- (c) A current carrying solenoid produces a magnetising field of 150 A/m inside it. If an iron core of susceptibility 2000 is placed within this solenoid, what would be the magnetic induction B in the core?

GROUP - C

Answer any five questions:

 4×5

- 13. Two binary stars of masses 2×10^{21} kg and 3×10^{21} kg are 10^6 km apart and are rotating about their centre of mass. Find the angular velocity w. Given $G = 6.67 \times 10^{-11}$ Nm² kg⁻².
- 14. Consider a system of N identical particles each of mass M separated by a distance R from each other. Find the simplified expression of gravitational potential energy of the system.

15. For the given equation of state:

$$\left(p+\frac{a}{TV^2}\right)(V-b)=RT,$$

obtain the critical coefficient and the Boyle temperature. Here, the terms in the above equation are of usual meaning with the constants a and b.

4

16. (a) Write Planck's formula of energy distribution in black body radiation at an absolute temperature T. Draw distribution curve.

2

(b) A spherical black body of 5 cm radius is at a temperature 327 °C. What is the power radiated? At what wave length is the maximum energy radiated? Given $\sigma = 5.672 \times 10^{-8}$ SI unit.

2

17. Find the efficiency of a reversible Carnot cycle in respect of T-S-diagram [T and S refer to absolute temperature and entropy respectively].

Justify whether it is a practical steam engine cycle or not.

3+1

18. For a two-phase system in equilibrium, p is a function of T only so that

$$\left(\frac{\partial p}{\partial T}\right)_{V} = \left(\frac{\partial p}{\partial T}\right)_{S}.$$

If E_s be the adiabatic elasticity, show that

$$E_S C_V = TV \left(\frac{\partial p}{\partial T}\right)^2$$

irrespective of the type of transition that occurs. Here, the terms in the above equation are of usual meaning.

- 19. A dipole of moment p is placed with its axis vertical at a distance d from an infinite conducting horizontal grounded plane. Calculate the force exerted on the plane by the dipole with proper explanation.
- 20. (a) What is meant by hysteresis? Compare the hysteresis curves for soft iron and steel.

(Turn Over)

4

(b) The core of a transformer is made of soft iron of mass 10 kg and density 7500 kg/m³. If the area of the hysteresis loop represents a loss of 250 Jm⁻³ cycle⁻¹, find the hourly loss of energy when the transformer is used for operation in an ac of frequency 50 Hz.