2015

MATHEMATICS

[Honours]

PAPER - VII

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

GROUP - A

(Mathematical Probability)

[Marks : 36]

1. Answer any one question:

15 x 1

(a) (i) Define random variable and its distribution function. Show that distribution function

(Turn Over)

of a random variable is continuous on the right at all points. 1+1+3

- (ii) Let f(x) be the probability mass function of a discrete random variable X, for $x = 0, 1, 2, \dots$. Given that $f(x) = \frac{\lambda}{x} f(x-1)$, for $x = 1, 2, \dots$. Determine f(x). Find the mean value of the random variable X. 2+3
- (iii) The joint density function of two random variables X and Y is given by

$$f(x, y) = x + y, 0 < x < 1, 0 < y < 1$$

= 0 , else where

Find the distribution of XY.

(b) (i) For a bivariate random variable (X, Y),
 define regression curves. For a bivariate
 normal distribution, prove that regression
 curves are identical with regression
 lines.

- (ii) Given that x = 4y + 5 and y = kx + 4 are the regression lines of x on y and of y on x respectively. Show that $0 < k \le 0.25$. If k = 0.10, find the means of the variables x and y and also their correlation coefficient.
- (iii) State and prove weak law of large numbers.
- 2. Answer any two questions:

(a) (i) Prove that

 $P(\lim A_n) = \lim P(A_n),$

clearly stating the restriction on the sequence of events $\{A_n\}$.

- (ii) Let X be a continuous random variable having distribution function F(x). Show that Y = F(x) has uniform distribution over (0, 1).
- (b) (i) If X_i (i = 1, ... n) are mutually independent $N(\mu_i, \sigma_i)$ variates, then find the distribution

5

5

 8×2

of
$$Z = \sum_{i=1}^{n} a_i X_i$$
. Hence calculate the mean and standard deviation of Z . $4+2$

- (ii) If the correlation coefficient $\rho(X, Y)$ between two random variables X and Y exists, then show that $-1 \le \rho(X, Y) \le 1$. 2
- (c) (i) Define Bernoulli sequence of trials. Prove that in *n* Bernoulli trials with probability of failure *q*, the probability of at most *k* success is 1+4 $\int_{0}^{q} x^{n-k-1} (1-x)^{k} dx / \int_{0}^{1} x^{n-k-1} (1-x)^{k} dx$
 - (ii) If X is a $\gamma\left(\frac{n}{2}\right)$ variate, then show that Y = 2X has a χ^2 -distribution with n degrees of freedom.
- (d) (i) If X is a nonnegative random variable having mean m, prove that

$$P(X \ge \tau m) \le 1/\tau$$

for any $\tau > 0$.

3

(ii)	For	any	distribution,	prove	that	the
	first	abso	lute moment	about 1	the m	ean
	cannot exceed the standard deviation.					

3. Answer any one question:

 3×1

(a) Among n coins, (n-1) are of the usual type, while one has head on both sides. A coin is chosen at random and tossed k times. If the coin falls head each time, what is the probability that it is the unusual coin?

(b) The random variables X and Y are connected by the linear relation aX + bY + c = 0. Find the correlation coefficient between X and Y.

4. Answer any one question:

 2×1

(a) $A_1, A_2, A_3, ... A_n$ are *n* mutually independent events. Prove that the probability of accurance of at least one of the events is $1 - (1 - p_1)$ $(1 - p_2) (1 - p_n)$ where $p(A_i) = p_i$, i = 1,

2

2, ..., n.

(b) If X has a t-distribution with n degrees of freedom, then show that $Y = X^2$ has an F(1, n) distribution.

2

GROUP - B

(Statistics)

[Marks: 27]

5. Answer any one question:

 15×1

- (a) (i) Define standard error of a statistic and give its significance. Show that for any population with variance σ^2 standard error of a sample mean is $\frac{\sigma}{\sqrt{n}}$, where n is size of the sample. 1+2+4
 - (ii) Prove that for a normal (m, σ) population, the sampling distribution of the statistic is $\frac{ns^2}{\sigma^2} \chi^2$ -distribution with n-1 degree of freedom where S^2 is the sample variance of a random sample of size n drawn from the given population.

(b) (i) What is meant by 'statistical hypothesis'?

Explain with example the following terms:

Simple Hypothesis and Composite hypothesis.

- (ii) Show that sample variance is not an unbiased estimator of the population variance. Find the unbiased estimator of the population variance. Examine whether this unbiased estimator is consistent or not.
- (iii) A drug is given to 10 patients, and the increments in their blood pressure were recorded to be 3, 6, -2, 4, -3, 4, 6, 0, 02. Is it reasonable to believe that the drug has no effect on change of blood pressure? Test at 5% significance level, assuming the population to be normal.

6. Answer any one question:

 8×1

(a) (i) A die was thrown 1,000 times, and the frequencies of the different faces were observed to be the following:

Face : 1 2 3 4 5 6 Total

Frequency: 105 143 181 157 198 216 1,000

Test if the die is honest.

6

(ii) State Neyman-Pearson theorem.

2

(b) Define confidence interval in connection with an unknown population parameter. The population of scores of 10-year children in a test is known to have a standard deviation 5.2. If a random sample of size 20 shows a mean of 16.9, first 95% confidence limits for the mean score of the population assuming that the population is normal. Given 2+6

$$\frac{1}{\sqrt{2\pi}} \int_{1.96}^{\infty} e^{-\frac{x^2}{2}} dx = 0.025.$$

(40,0000)	93		93.	
77	Answer any	ano	question	•
1.	Allowel ally	One	question	•

4 × 1

- (a) Show that sample correlation coefficient is independent if change of origin and magnitude of the scale of variables.
- (b) Find the sampling distribution of the mean of Gamma population.

GROUP - C

Optional Paper - I

(Discrete Mathematics)

[Marks : 27]

8. Answer any one question:

 3×1

3

3

(a) Define cardinality of a set and order set with examples.

(b) Solve the recurrence relation $s_n - 4s_{n-1} + 4s_{n-2} = 0$, $s_0 = 1$ and $s_1 = 6$ by using generating function where $n \ge 2$.

(Turn Over)

9.	Answer any	two questions:	:

 12×2

(a) (i) If G be a connected planner graph having n vertices, e edges and r regions, then prove that n-e+r=2.

(ii) Prove that the set D of all factors of 12 3

4

under divisiblity forms a lattice. (iii) By principle of induction, prove that

 $3^{4n+2} + 5^{2n+1}$ is a multiple of 14, for all positive integral value of n including zero.

(b) (i) Prove that the number of vertices of odd

5

degree in a graph is always even. (ii) Let I is the set of all integers: $X \equiv y$ (mole 7) is an equivalence relation in I.

Find what is the partition of I.

3

(iii) If (A, \leq) and (B, \leq) be two partially order sets then prove that $(A \times B, \leq)$ is partially order set with partial order \leq defined by $(a, b) \leq (a', b')$ if $a \leq a'$ in A and b < b' in B.

- (c) (i) If a graph has exactly two vertices of odd degree, then prove that there must be a path joining these two vertices.
 - (ii) Find time complexity of linear search algorithm.
 - (iii) Let {A, B, C, S} be the set of nonterminals, with S being the starting symbol. Let {a, b, c} be the set of terminals. Describe the language specified by the following set of production in set theoretic notation:

 $\{S \rightarrow aS, S \rightarrow bA, A \rightarrow aA, A \rightarrow a\}$

Optional Paper - II

(Mathematical Modelling)

[Marks: 27]

8. Answer any one question:

 15×1

3

(a) A prey-predator model satisfies the differential equation

$$\frac{dx}{dt} = x(a - by)$$

$$\frac{dy}{dt} = -y(p - qx)$$

with $x(0) = x_0$, $y(0) = y_0$, where a, b, p, q are positive constants and x(t), y(t) are the population of prey-predator at t.

- (i) Find the equilibrium position of these equations.
- (ii) Discuss the stability of these equilirium points
- (iii) Discuss the limitations of this prey -predator model.
- (b) (i) Growth of a single species satisfies the differential equation

$$\frac{dx}{dt} = \alpha x \left(1 - \frac{x}{k} \right) \text{ with } x(0) = x_0, \ \alpha > 0, \ k > 0.$$

Find the population at time t. Sketch the graph of x(t) against t and discuss the behaviour of the solution with respect to the initial population. 4+4

(ii) Show that the mathematical model represented by

$$\frac{dx}{dt} = x(15 - 5x - 3y)$$

$$\frac{dy}{dt} = y(4 - x - y), x \ge 0, y \ge 0$$

has a position of equilibrium. Show also that this position is stable and two species can co-exist.

9. Answer any one question:

 8×1

(a) Investigate the qualitative behaviour of the solution of the system 8

$$\frac{dx}{dt} = x \left(1 - \frac{x}{30} \right) - \frac{xy}{x+10}$$
$$\frac{dy}{dt} = y \left(\frac{x}{x+10} - 1/3 \right)$$

(b) Derive the relation between carvelocity (u) and traffic density (p) on a highway. Find speed limitation (u max) on highway.

10. Answer any one question:

 4×1

4

(a) Define critical point of the system of differential equation

$$\frac{dx}{dt} = f(x, y)$$
 and $\frac{dy}{dt} = \psi(x, y)$.

When is this critical point said to be stable and asymptotically stable?

(b) In a population of birds, the proportionate birth rate and the proportionate death rate are constants being 0.45 per year and 0.65 per year respectively. Formulate a model of the population and discuss its long term behaviour.

Optional Paper - III

(Application of Mathematics in Finance and Insurance)

[Marks : 27]

8. Answer any one question:

 15×1

(a) (i) Discuss profit maximisation objectives of a firm. How far is it different from wealth maximisation objective?

(ii) Find the present value of the following cash flows using 5% discounting rate:

<u>Year</u>	Cash Flows	
	Rs.	
1-4	2,000	
5	3,000	
6	5,000	
7-8	3,000	3
9	5,000	
10	7,000	6 + 4 + 5

- (b) (i) What do you mean by 'Stand-alone risk' and 'portfolio risk' in corporate security market?
 - (ii) What do you mean by futures and forwards in respect to financial derivatives?
 - (iii) Write a note on proximate cause of insurance. 4+7+4
- 9. Answer any one question: 8×1
 - (a) Briefly describe Markowitz model.

(b) State the concept of compounding and discounting in time value of money. 8

10. Answer any one question:

 4×1

- (a) Discuss the benefits of insurance to the society.
- (b) Write a note on internal rate of return (IRR). 4