OLD

2015

Part-I 3-Tier

MATHEMATICS

PAPER-II

(Honours)

Full Marks: 90

Time: 4 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

(Real Analysis)

[Marks : 27]

1. Answer any one question:

 1×5

(a) (i) Define uniform continuity of a real valued function defined on a subset of R. Let
f: [a, b] → R be continuous on [a, b]. Then show that f is uniformly continuous on [a, b].

- (ii) Let f: [a,b]→ n be monotone on [a, b]. Then show that the set of points of discontinuities of f in [a, b] is a countable set.
- (b) (i) Show that every bounded non-empty open subset of R can be expressed as the union of a countable collection of disjoint open intervals.
 - (ii) Let $\sum u_n$ be a series of positive real numbers

and let
$$\lim Imf n\left(\frac{u_n}{u_n+1}-1\right)=r$$
. Prove that

 $\sum u_n$ is convergent if r > 1. Hence show that the

series
$$1 + \frac{1}{2} + \frac{13}{24} + \frac{13.5}{24.6} + \dots + \frac{13.5.....(2n-1)}{24.6.....(2n)} + \dots$$

is convergent.

(iii) Let $f: R \to R$ be continuous on R. Prove that the set $S = \{x \in R : f(x) \neq 0\}$ is an open set in R.

2. Answer any one question :

1×8

(a) (i) Write down the coefficient of x^7 in the Taylor series expansion of the function

$$f(x) = \log(x + \sqrt{1 + x^2})$$
 about the origin.

(ii) Show that $\{u_n\}$ is a Cauchy sequence where

$$\mathbf{u_n} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

(b) (i) Consider the polynomial $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n, \quad \text{with} \quad \text{real}$ coefficients. If p (x) has a real root in the interval [0, 1], then show that

$$\frac{a_0}{1.2} + \frac{a_1}{2.3} + \dots + \frac{a_n}{(n+1)(n+2)} = 0.$$

(ii) Evaluate : $\lim_{n\to\alpha} n \operatorname{Sin}(2\pi e n!)$

1×4

(a) If f is differentiable on [0, 1], show by Cauchy's Mean

Value theorem that the equation $f(1) - f(0) = \frac{f'(x)}{2x}$ has at least one solution in (0, 1).

(b) Find the limit points of the set

$$S = \left\{ n + \frac{1}{3m^2} : n, m \in 1N \right\}$$

Group B

(Several Variables and Applications)

[Marks : 22]

4. Answer any two questions :

2×8

- (a) (i) State and Prove Young's theorem.
 - (ii) Show that f (xy, z 2x) = 0 satisfies, under suitable conditions, the equation $x \frac{\partial z}{\partial x} y \frac{\partial z}{\partial y} = 2x$

What are these conditions?

6+2

(b) (i) Let u, v be functions of ξ , η , ζ having continuous

first order partial derivatives and ξ , η , ζ be functions of x and y having continuous first order partial derivatives. Prove that

$$\frac{\partial(u,v)}{\partial(\mathbf{x},\mathbf{y})} = \frac{\partial(u,v)}{\partial(\xi,\eta)}\frac{\partial(\xi,\eta)}{\partial(\mathbf{x},\mathbf{y})} + \frac{\partial(u,v)}{\partial(\eta,\zeta)}\frac{\partial(\eta,\zeta)}{\partial(\mathbf{x},\mathbf{y})} + \frac{\partial(u,v)}{\partial(\xi,\zeta)}\frac{\partial(\xi,\zeta)}{\partial(\xi,\zeta)}\frac{\partial(\mathbf{x},\mathbf{y})}{\partial(\xi,\zeta)}$$

(ii) Prove that the function

$$f(x, y) = f(x,y) = \sqrt{|xy|}, x \neq 0, y \neq 0$$

= 0, x = 0, y = 0.
is not differentiable at the point (0,0). 5+3

(c) (i) Find the envelope of the family of ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{(k-a)^2} = 1 \text{ where k is a constant.}$$

(ii) If p_1 , p_2 be the radii of curvature at the entremities of any chord of the cardiode $r = a(1 + \cos\theta)$, which passes through the pole,

then prove that
$$p_1^2 + p_2^2 = \frac{16}{9}a^2$$
.

5. Answer any one questions :

6×1

- (a) By the transformation $\xi = a + \alpha x + \beta y$, $\eta = b \beta x + \alpha y$ where α, β, a, b are all constants and $\alpha^2 + \beta^2 = 1$, the function u(x, y) is transformed into $U(\xi, \eta)$. Prove that $U_{\xi\xi}U\eta\eta U^2_{\xi\eta} = u_{xx}u_{yy} u^2_{xy}.$
- (b) State which type of curve may have asymptotes. Find the equation of the cubic which has the same asymptotes as the curve

$$x^3 - 6x^2y + 11xy^2 - 6y^3 + x + y + 1 = 0$$

and which touches the axis of y at the origin and goes
through the point (3, 2).

Group C

(Integral Calculas)

[Marks: 09]

6. Answer any one questions :

1×9

(a) (i) Obtain a reduction formula for $\int \frac{dx}{(x^2 + a^2)^n}$,

where n is a positive integer; and hence deduce

the value of
$$\int \frac{dx}{(x^2 + a^2)^3}$$
.

(ii) Evaluate :
$$\iint_{[0,1]\alpha[0,1]} \max\{x,y\} dx dy$$

- (b) (i) Find the length of the loop of the curve $36y^2 = (3x + 7)(3x + 4)^2$.
 - (ii) Find the volume of the solid generated by revolving the cardioide $r = a(1 \cos\theta)$ about the initial line.

Group D

(Differential Equations : Ordinary and Partial)

[Marks : 32]

7. Answer any one question:

 1×15

(a) (i) Verify y that x = 0 is a regular singular point of the differential equation

$$\left(x^2 - 1\right)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - xy = 0$$

and find two independent series solutions of the equations near x = 0 and also find the interval where this solution exists.

(ii) Show that of y_1 and y_2 be solutions of the equation $\frac{dy}{dx} + Py = Q$ where P and Q are functions

of x alone and $y_2 = y_1 z$ then $z = 1 + ae^{-\int \frac{Q}{y_1} dx}$. (a is any arbitrary constant)

(b) (i) Solve by Laplace transform $3 \frac{\partial^2 y}{\partial x^2} - \frac{\partial y}{\partial t} = 0$ where

$$y\left(\frac{\pi}{2},t\right) = 0$$
, $\left(\frac{\partial y}{\partial x}\right)_{x=0} = 0$ and $y(x, 0) = 30 \text{ Cos } 5x$.

- (ii) If $Mx Ny \neq 0$, then show that $\frac{1}{Mx Ny}$ is an integrating factor of the equation Mdx + Ndy = 0, where M and N (functions of x and y) can be written as $M = yf_1(xy)$, $N = xf_2(xy)$.
- (iii) Solve (p + q)(x + y) = 1, where the symbols have there usual meaning.

8. Answer any three questions :

 3×5

(a) Solve :
$$\frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = x^{m+1}$$

- (b) Find the equation of the integral surface of the linear differential equation 2y(z-3)p+(2x-z)q=y(2x-3) which passes through the circle $x^2 + y^2 = 2x$, z = 0.
- (c) Show that the family of confocal conics $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$ is self-orthogonal where d is a parameter.
- (d) Find the eigen values and eigen functions of the boundary value problem

$$\frac{d^2y}{dx^2} + \lambda y = 0 \text{ with } y \text{ (0) and } y(2\pi) = 0.$$

(e) Solve by the method of variation of Parameters —

$$(2x+1)(x+1)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} - 2y = (2x+1)^2$$

It is given that y = x and $y = \frac{1}{x+1}$ are two linearly independent solutions of the corresponding homogeneous equation.

9. Answer any one question :

- 1x2
- (a) Reduce the equation $\sin y \frac{dy}{dx} = \cos x (2\cos y \sin^2 x)$ to a linear equation.
- (b) Eliminate the aebitary functions f and φ from $y = f(x at) + \varphi(x + at)$ to form a partial differential equation.