2015

MATHEMATICS

[Honours]

PAPER - II (New)

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

[NEW SYLLABUS]

GROUP - A

(Real Analysis)

[Marks : 35]

1. Answer any one question:

 15×1

(a) (i) Suppose that $f:[a,b] \to R$ be a continuous function on the closed

interval [a, b]. If $f(a) \cdot f(b)$ is negative then show that there exist points c_1 in the open interval (a, b) such that

$$f(c_1)=0$$

- (ii) If $f:(a, b) \to R$ is monotone increasing and if a < c < b then show that f(c-0)and f(c+0) exist finitely and
- $f(c-0) = \sup_{a < x < c} f(x) \le f(c) \le \inf_{c < x < b} f(x) = f(c+0).$
 - (iii) Prove that every neighbourhood of a limit point of a set of real numbers contains infinitely many points of that set. Deduce that the set $S = \{2, 3, 4, 5\}$ has no limit point.
 - (b) (i) Define Cauchy sequency. Let D⊆R, and f: D → R be uniformly continuous on D. Prove that if {x_n} be a Cauchy sequence in D, then {f(x_n)} is also a Cauchy sequence in R; where R is the set of real numbers. Is the result true for continuous function f? Justify.

1 + 4 + 2

5

- (ii) State and prove Leibnitz's test for convergence of an alternating series of real numbers. 1+3
- (iii) If the series $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{1}{n}$ converges to a real number s then show that the rearranged series

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \dots$$

converges to $\frac{s}{2}$.

8×2

- 2. Answer any two questions:
 - (a) (i) State the least upper bound axiom for the set R of all real numbers. Hence show the a non-empty bounded below subset of R has the greatest lower bound in R. 1+3
 - (ii) Prove that every infinite bounded set of real numbers has atleast one accumulation point.

- (b) (i) Let Q be the set of irrational numbers and $S \subset Q$, defined by $S = \{x \in Q : x > 0, x^2 < 2\}$. Prove that supremum of S does not belongs to Q.
 - (ii) Prove that the set of all irrational numbers is not denumerable.
- (c) (i) Obtain Maclaurin's infinite series expansion of $\log (1+x)$, $-1 < x \le 1$.
 - (ii) State and prove Rolle's theorem of differential calculus. 1+4
- 3. Answer any one question:

 4×1

4

(a) If

$$\lim_{x\to 0} \frac{ae^x + bc^{-x} + 2\sin x}{\sin x + x\cos x} = 2$$

find the values of a and b.

4

(b) If
$$I_n = \int_0^{\pi/2} x^n \sin x dx$$
 (n is a positive integer), then prove that

$$I_n + (n^2 - n) I_{n-2} = n - \left(\frac{\pi}{2}\right)^{n-1}$$

GROUP - B

(Several Variables and Applications)

[Marks : 20]

4. Answer any two questions:

 8×2

(a) (i) Let

$$f(x,y) = x\sin\frac{1}{y} + y\sin\frac{1}{x}, x, y \neq 0$$

$$0, x, y = 0.$$

Examine the existence of double limit and the two repeated limits at the origin.

- (ii) State and prove Euler's theorem on homogeneous function of degree n in three independent variables.
- (b) (i) Prove that the function $f(x, y) = \sqrt{|xy|}$ is not differentiable at (0, 0).
 - (ii) State and prove Young's theorem for the equality of $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ at some point (a, b) of the domain of f(x, y). 1+4

(c) (i) If ρ_1 and ρ_2 are the radii of curvature at two extremities of any chord of the cardiode $r = a(1 + \cos\theta)$ passing through the pole, prove that

$$\rho_1^2 + \rho_2^2 = \frac{16a^2}{9}$$

(ii) Find the equation of the cubic which has the same asymptotes as the curve

$$2x^3 + x^2y - 5xy^2 + 2y^3 + 3x + 4y - 7 = 0$$

and which passes through the points (0, 0), (1, -1), (0, 2).

5. Answer any one question:

 4×1

4

(a) Find the pedal equation of

$$r = a + b \cos \theta$$

with respect to the pole.

4

(b) Show that origin is a node, cusp or conjugate point of the curve

$$y^2 = ax^2 (1+x)$$

according as a is positive, zero or negative. 4

GROUP - C

(Analytical Geometry of Two Dimensions)

[Marks : 20]

6. Answer any two questions:

 8×2

(a) If

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

represents a pair of straight lines, prove that the area of the triangle formed by the bisectors of the angles between them and the axis of X is

$$\left(\frac{\sqrt{(a-b)^2+4h^2}}{2h}\right)\cdot\left(\frac{ac-g^2}{ab-h^2}\right).$$
 8

(b) Reduce the equation

$$x^2 + 4xy + y^2 - 2x + 2y + 6 = 0$$

to its canonical form. Name the conic, find the eccentricity of the conic. 5+1+2

(c) Let P and Q be two points on the conic $\frac{l}{r} = 1 - e \cos \theta$ with $(\alpha - \beta)$ and $(\alpha + \beta)$ as vectorial angles. Prove that the locus of the foot of the perpendicular from the pole on the straight line PQ is

$$(e^2 - \sec^2 \beta)r^2 + 2ler\cos \theta + l^2 = 0.$$

7. Answer any *one* question:

 4×1

8

(a) Find the locus of the poles of the normal chords of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

(b) Show that the equation of the auxiliary circle of the conic $\frac{l}{r} = 1 + e \cos \theta$ is

$$l^2 - 2ler\cos\theta + r^2(e^2 - 1) = 0.$$

GROUP -D

(Differential Equation - I)

[Marks: 15]

8. Answer any *one* question :

 15×1

(a) (i) Show that

$$(2x^3 + 3xy + c)^2 - 4(x^2 + y)^3 = 0,$$

where c is a constant, is the general solution of the differential equation

$$y = 2px + p^2, \ p = \frac{dy}{dx}.$$

Can you conclude about the singular solution of the equation from c-discriminant relation and p-discriminant relation? Justify your answer.

(ii) Suppose that a, b are two constants and u is a function of x. Prove that, on the interval $(-\infty, \infty)$, $y = u e^{-ax/2}$ satisfies the differential equation

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0$$

if and only if u satisfies the differential equation

$$\frac{d^2u}{dx^2} + \left(\frac{4b - a^2}{4}\right)u = 0.$$

(iii) Find the orthogonal trajectories of the family of co-axial circles

$$x^2 + y^2 + 2gx + c = 0,$$

where g is the parameter and c is constant.

(b) (i) Solve by the method of variation of parameters

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{-2x}\sec x$$

(ii) Solve the differential equation

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = 0,$$

given that $\left(x+\frac{1}{x}\right)$ is a solution.

5

(iii) Find the eigenvalues of eigen functions of the differential equation

$$\frac{d^2y}{dx^2} + \lambda y = 0, \text{ (λ being a real numbers)},$$

which satisfies the boundary conditions

$$y(0) = 0$$
 and $y(\pi) = 0$.