2016

MATHEMATICS

[Honours]

PAPER - II

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their

own words as far as practicable

Illustrate the answers wherever necessary

[NEW SYLLABUS]

GROUP - A

(Real Analysis)

[Marks: 35]

1. Answer any one question:

15 × 1

(a) (i) Let I = (a, b) be bounded open interval and $f: I \to R$ be a monotone decreasing

(2)

function on I. If f is bounded above on I then prove that

$$\lim_{x \to a+} f(x) = \sup \left\{ f(x) : x \in I \right\}.$$

- (ii) If $f: [a, b] \to R$ be continuous on the closed and bounded interval [a, b], then prove that f is bounded on [a, b].
- (iii) Let $I \subset R$ be an interval and $f: I \to R$. Let there be a positive real number M such that

$$|f(x_1)-f(x_2)| \leq M|x_1-x_2|$$

for any $x_1, x_2 \in I$. Prove that f is uniformly continuous on I. Prove that the function

$$f(x) = \frac{1}{x-1}, x \in (1,2]$$

is not uniformly continuous on (1, 2].

3 + 2

5.

(b) (i) Find the upper and lower limits of the sequence

$$\left\{ (-1)^n + \sin\frac{n\pi}{4} \right\}.$$

(ii) Test the convergence of the series

$$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$$

(iii) A function $f: R \to R$ is defined by

$$f(x) = x$$
 if x is rational
= $\sin x$ if x is irrational.

Show that f is differentiable at 0 and f'(0) = 1.

2. Answer any two questions:

 8×2

(a) (i) Use Taylor's theorem to prove that

$$1 + \frac{x}{2} - \frac{x^2}{8} < \sqrt{1+x} < 1 + \frac{x}{2} \text{ if } x > 0.$$

(ii) Let $c \in R$ and f and g be two functions such that f(c) = g(c) = 0, $g(x) \neq 0$ in some deleted neighbourhood of c. If f and gare differentiable at c and $g'(c) \neq 0$ then prove that

$$\lim_{x\to c}\frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)}.$$

(4)

(b) (i) Evaluate

$$\lim_{n\to\infty} \left(1 - \frac{1}{5n}\right)^{n+1}.$$

(ii) Prove that the function

$$f(x) = \sqrt{\sin x}, x \in [0, \pi]$$

is continuous on $[0, \pi]$.

(c) (i) Examine the convergence of the series

$$x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{5} + \dots, x > 0.$$

(ii) If

$$\lim_{x\to a} f(x) = l, (l\neq 0)$$

then prove that there exists some neighbourhood of 'a', at every point of which f(x) will have the same sign as that of l.

UG/I/MATH/H/II/16(New)

(Continued)

4

4

3. Answer any one question:

 4×1

(a) Deduce the reduction formula for

$$\frac{1}{(a+b\cos x)n},$$

for positive values of n.

4

(b) If

$$f(x) = (x - a)^m (x - b)^n$$

where m and n are positive integers, show that c in Rolle's theorem divides the segment [a, b] in the ratio m : n.

GROUP - B

(Several Variable and Applications)

[Marks : 20]

4. Answer any two questions:

 8×2

(a) (i) Verify that the double limit

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{3x^2y^2}{2x^2y^2 + 5(x - y)^2}$$

does not exist.

4

UG/I/MATH/H/II/16(New)

(ii) Show that the function

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

is continuous at (0, 0).

(b) (i) Show that for the function

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0), \end{cases}$$

 $f_{xy}^{(0,0)} = f_{yx}^{(0,0)}$, even though the conditions of Schwartz's theorem and also of Young's theorem are not statisfied.

(ii) Let

$$f(x,y) = \begin{cases} x , & |y| < |x| \\ -y , & |y| \ge |x| \end{cases}$$

prove that f(x, y) is not differentiable at (0, 0).

2

4

(c) (i) Find the Jacobian
$$\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$$
 where

$$x = r \cos \theta \cos \phi$$

$$y = r \sin \theta \sqrt{1 - m^2 \sin^2 \phi}$$

$$z = r \sin \phi \sqrt{1 - n^2 \sin^2 \theta} \text{ and }$$

$$m^2 + n^2 = 1$$

(ii) Define envelope of a curve. Obtain the envelope of the circles drawn upon the radii vectors of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 as diameter. 4

5. Answer any one question:

 4×1

4

4

(a) Determine the pedal equation of the curve $r^{m} = a^{m} \sin m\theta + b^{m} \cos m\theta.$

(b) Define curvature of a curve. For the equiangular spiral $r = ae^{\theta \cot \alpha}$, prove that the radius of curvature subtends a right angle at the pole.

UG/I/MATH/H/II/16(New)

GROUP -- C

(Analytical Geometry for Two Dimensions)

[Marks : 20]

6. Answer any two questions:

 8×2

- (a) Prove that three normals can be drawn to a parabola from a given point and the ordinates of the feet of the normals is zero. Also show that the feet of the normals lie on a rectangular hyperbola.
- (b) Reduce the equation

$$x^2 + 4xy + y^2 - 2x + 2y + 6 = 0$$

to its canonical form. Determine the nature of the conic and its eccentricity. 5+1+2

(c) If lx + my = 1 is a chord of the circle $x^2 + y^2 = a^2$ which (chord) subtends an angle 45° at the origin, show that

$$4\left\{a^{2}\left(l^{2}+m^{2}\right)-1\right\}=\left\{a^{2}\left(l^{2}+m^{2}\right)-2\right\}^{2}.$$
 8

7. Answer any one question:

- 4 × 1
- (a) The polar of the point P with respect to the circle $x^2 + y^2 = a^2$ touches the circle $4x^2 + 4y^2 = a^2$. Show that the locus of P is the circle $x^2 + y^2 = 4a^2$.
- (b) Show that the straight line $r\cos(\theta \alpha) = p$ touches the conic

$$\frac{l}{r} = 1 + e \cos \theta \text{ if } (l \cos \alpha - ep)^2 + l^2 \sin^2 \alpha = p^2. \quad 4$$

GROUP - D

(Differential Equation - I)

[Marks: 15]

8. Answer any one question:

15 × 1

(a) (i) Solve:

$$xy\left\{\left(\frac{dy}{dx}\right)^2 - 1\right\} = \left(x^2 - y^2\right)\frac{dy}{dx}.$$
 5

(ii) Obtain the complete primitives and

singular solutions of the Clairaut's equation

$$(y-1)p - xp^2 + 2 = 0$$

(iii) If M and N are both homogeneous functions of x and y of same degree n then prove that

$$\frac{Mdx + Ndy}{Mx + Ny}, \ (Mx + Ny \neq 0)$$

satisfy the condition of integrability.

Or

Show that the equation

$$(P+Qx)\frac{dy}{dx} = R+Qy$$

where P, R are homogeneous functions in x and y of degree n and Q is a homogeneous functions in x and y of degree m can be solved by the substitution y = vx.

5

- (b) (i) State the conditions for which the solution of the differential equation $\frac{dy}{dx} = f(x, y)$ exists uniquely. Show that $\frac{dy}{dx} = 2\sqrt{y}$, y(0) = 0 has non unique solution. 2 + 3
 - (ii) Solve by the method of variation of parameters

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \frac{e^{-x}}{x^2}$$

(iii) What do you mean by eigenvalue of a differential equation? Find the eigenvalues and the eigenfunctions for the differential equation

$$\frac{d^2y}{dx^2} + \lambda y = 0$$

satisfying the boundary condition

$$y(0) = 0$$
 and $y(1) = 0$. 5