2015

NEW

Part II 3-Tier MATHEMATICS

PAPER—III (General)

Full Marks: 90

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

(Linear Programming)

[Marks: 36]

1. Answer any one question :

15×1

(a) (i) What is B.F.S. (Basic feasible solution) in a L.P.P.? Show that $x_1 = 5$, $x_2 = 0$, $x_3 = -1$ is a basic solution of the system of equations:

$$x_1 + 2x_2 + x_3 = 4$$

 $2x_1 + x_2 + 5x_3 = 5$

Find other basic solutions, if there be any.

2+3

- (ii) A factory is engaged in manufacturing two products A and B which involve lathe work, grinding and assembling. The cutting, grinding and assembling times required for one unit of A are 2, 1 and 1 hours respectively and for one unit of B are 3, 1 and 3 hours respectively. The profits on each unit of A and B are Rs. 2.00 and Rs. 3.00 respectively. Pose a L.P.P. in terms of maximizing the profit on the items manufactured while 300 hours of lathe time, 300 hours of grinding time and 240 hours of assembling time are available.
- (iii) Find the dual of the following L.P.P.:

 Maximize $Z = 6x_1 + 5x_2 + 10x_3$ Subject to $4x_1 + 5x_2 + 7x_3 \le 5$ $3x_1 + 7x_3 \le 10$ $2x_1 + x_2 + 8x_3 = 20$ $2x_2 + 9x_3 \ge 5$

 $x_j \ge 0$, j = 1, 2 and x_3 is unrestricted in sign.

- (b) (i) What is convex set? If x_1 , x_2 be real, show that the set given by $X = \{(x_1, x_2) | 4x_1^2 + 9x_2^2 \le 36\}$ is a convex set. 2+3
 - (ii) Show that the set of all convex combinations of a finite number of points is a convex set. 5

(iii) Solve the following LPP by graphical method: Maximize $Z = 3x_1 - x_2$

Subject to
$$2x_1 + x_2 \ge 2$$
$$x_1 + 3x_2 \le 2$$
$$x_1 \le 4$$

where
$$x_1, x_2 \ge 0$$

5

2. Answer any two questions:

8×2

(a) Obtain an optimal basic feasible solution to the following transportation problem:

	M_1	M_2	M_3	M_4	
W_1	2	2	2	1	3
$\overline{W_2}$	10	8	5	4	7
W ₃	7	6	6	8	5
	4	3	4	4	

(b) Solve the assignment problem and obtain optimum solution for the cost matrix:

	а	b	С	d	е
1	11	17	8	16	20
2	9	7	12	6	15
3	13	16	15	12	16
4	21	24	17	28	26
5	14	10	12	16 6 12 28 11	15

(c) Apply the principle of duality to solve the L.P.P.:

Maximize
$$Z = 4x_1 + 3x_2$$

subject to $x_1 + x_2 \le 7$
 $3x_1 + x_2 \le 15$
 $0 \le x_1 \le 6$
 $0 \le x_2 \le 8$
 $-x_2 \le 1$
 $x_1, x_2 \ge 0$

3. Answer any one question :

 3×1

8

(i) Graph the convex hull of the points:

$$(0, 0), (0, 1), (1, 2), (1, 1), (4, 0)$$

which of these points is an interior point of the convex hull? Express it as a convex combination of the extreme points.

(ii) Rewrite the following L.P.P. in its standard form :

Maximize
$$Z = 3x_1 + 2x_2 + 5x_3$$

Subject to $2x_1 - 3x_2 \le 3$
 $4x_1 + 2x_2 - 4x_3 \ge 5$
 $2x_1 + 3x_3 \le 2$

where x_1 , $x_2 \ge 0$ and x_3 is unrestricted in sign.

3

4. Answer any one question :

 2×1

- (a) Show that the vectors (1, 2, 4), (2, -1, 3), (0, 1, 2) and (-3, 7, 2) are linearly dependent and find the relation among them.
- (b) Find the basic solutions of the system:

$$x_1 + 2x_3 = 1$$

 $x_2 + x_3 = 4$

which of them are feasible?

2

Group-B

(Numerical Analysis)

[Marks : 18]

5. Answer any two questions:

8×2

(a) Given the following table, calculate f(10.7) by Lagrange's interpolation formula:

<u> </u>	10.5	10-6	10-8	10-9	11-1	11.4
f(x)	0.26969	0-33839	0.39544	0-40022	0.38332	0.32257

(b) Solve the following system of equation by Gauss elimination method:

$$5x_1 - x_2 = 9$$

$$-x_1 + 5x_2 - x_3 = 4$$

$$5x_3 - x_2 = -6$$

(c) Obtain an approximate value of $\int_{0}^{1} \frac{dx}{1+x^2}$ upto four

places of decimal by using Simpson's $\frac{1}{3}$ rd rule taking four equal subintervals. Hence obtain the approximate value of π correct to four decimal places.

6. Answer any one question :

 1×2

- (a) Give the geometrical interpretation of Trapezoidal rule.
- (b) Prove that $\Delta \cdot \nabla = \Delta \nabla$.
- (c) What are the third order and fourth order differences of $f(x) = x^3 4x^2 + 3x + 1$?

Group-C

(Analytical Dynamics)

[Marks: 36]

7. Answer any one question:

 15×1

(a) (i) To prove that for a Projectile the sum of the Kinetic and Potential energies is constant throughout its motion.

8

- (ii) A particle starts from rest at a distance 'a' from a fixed point O, and moves with an acceleration proportional to its distance from O, away from it. Find out the velocity and position at any time t.
- (b) (i) Find the radial and cross-radial acceleration components of a particle moving in a plane.
 - (ii) A particle falls to the ground from a height h. If e be the coefficient of restitution, then show that the whole distance described by the particle before it has finished rebounding is h. $\frac{1+e^2}{1-e^2}$ and

the whole time taken is $\sqrt{\frac{2h}{g}} \cdot \frac{1+e}{1-e}$.

8. Answer any two questions :

8×2

- (a) Show that a particle moves in a circle of radius r with a uniform speed V, its acceleration is directed towards the centre and is of magnitude $\frac{v^2}{r}$.
- (b) An engine is pulling a train and works at a constant power doing H units of work per second. If M be the mass of the whole train and F the resistance supposed to be constant, show that the time of generating the velocity V from rest is:

 $\left[\frac{MH}{F^2}\log\frac{H}{H-FV} - \frac{MV}{F}\right].$

(c)	If a particle moves in a central orbit describes a	path
	$r^n = a^n \cos n\theta$, then find the law of force.	8

9. Answer any one question :

 3×1

- (a) In the radial velocity of a particle be four times of its transverse velocity, find the equation of the path of the particle.
- (b) State Kepler's laws for Planetary motion. 3
- 10. Answer any one question :

 2×1

- (a) If radial velocity is proportional to the transverse velocity, find the path in polar co-ordinate. 2
- (b) The velocity V of a particle moving along a straight line is given by the relation V² = aS² + b where S is the distance travelled from a fixed point and a, b are constants. Prove that its acceleration varies as the distance from a fixed point in the line.