2015

NEW

Part II 3-Tier

MATHEMATICS

PAPER-II

(General)

Full Marks: 90

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

[Marks: 45]

(Differential Calculus)

1. Answer any one question :

15×1

- (a) (i) Show that the set of all irrational numbers is uncountable.
 - (ii) Prove that the sequence $\{2n^2 + 3n 1\}$ is not a Cauchy sequence.

- (iii) Prove that $\left\{\frac{3}{2n^2}\right\}$ is a null sequence.
- (iv) State D'Alembert's ratio test for convergence of a series of positive terms. Use it to examine the convergence of:

 2+3

$$\frac{1^2}{2} + \frac{2^2}{2^2} + \frac{3^2}{2^3} + \dots + \frac{n^2}{2^n} + \dots$$

(b) (i) If
$$f(x) = 0$$
 for $x = 0$
= $3x^2 \sin \frac{1}{2x}$, $x \neq 0$

then show that f(x) is derivable but the derivative is not continuous at x = 0.

(ii) Find the minimum and maximum values of :

$$f(x) = 3x + \frac{2}{3x}$$
 for all $x \in R - \{0\}$

- (iii) Evaluate: $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{2}{3x}}$.
- 2. Answer any one question: 8x1
 - (a) (i) If $\log y = \tan^{-1}x$, then show that $(1+x^2)y_2 + (2x-1)y_1 = 0 \text{ and hence}$ find a relation among y_{n+2} , y_{n+1} & y_n .

1+3

(ii) Determine the values of a and b such that

$$\lim_{x \to 0} \frac{x(1+2a\cos x)-3b\sin x}{x^3} = 1$$

- (b) (i) State Langrange' Mean value theorem. In the Mean-value theorem $f(h) = f(0) + hf'(\theta h)$, $0 < \theta < 1$, find $\lim_{h \to 0+}$ when $f(x) = \cos \frac{3x}{2}$.
 - (ii) Differentiate : $\cot^{-1} \frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} \sqrt{1-x^2}}$

with respect to $\sin^{-1}x^2$.

- 3. Answer any four questions:
 - (a) Find the asymptotes of the curve: $32x^3 - 6xy^2 + y^3 + 8x^2 + 2xy - y^2 - 1 = 0$
 - (b) Show that the sum of the intercepts of any tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{2}$ is a constant.
 - (c) Find the radius of curvature, centre of curvature of $y^2 = 8y$ at (x, y).
 - (d) Verify Euler's theorem for the function:

$$f(x, y) = \cos^{-1}\left(\frac{x}{y}\right) + \cot^{-1}\left(\frac{x}{y}\right)$$

- (e) Find the condition of orthogonality of the curves : $ax^2 + by^2 = 2$, $\alpha x^2 + \beta y^2 = 3$.
- (f) Find the envelope of the family of lines $\frac{x}{a} + \frac{y}{b} = 1$ where the parameters are connected by $a^2 + b^2 = 4$.
- 4. Answer any three questions: 2×3
 - (a) Find the first order partial derivatives of :

$$f(x,y) = \frac{2x+3y-4}{2x-3y+1}$$
 at (4, 5).

- (b) If $\sum_{n=1}^{\alpha} a_n$ is convergent, prove that $\lim_{n\to\alpha} (2a_n + 3) = 3$.
- (c) State Leibnitz theorem on successive derivatives.
- (d) State the Schwarz's theorem on the commutative property of mixed partial derivatives.
- (e) The curves $y = x^2 + 1$, $(y 1)^2 = x$ passes through the point (1, 2). Find the angle of intersection at this point.

Group-B

[Marks : 27]

5. Answer any one question :

 15×1

A. (a) Evaluate any two:

 4×2

- (i) $\int \sqrt{\frac{a-x}{a+x}} dx$;
- (ii) $\int \frac{dx}{4+5\sin x};$
- (iii) $\int \frac{\mathrm{dx}}{2\mathrm{e}^{2x} + 5\mathrm{e}^{x} + 2} \cdot$

(b) If
$$I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx$$
, then show that

 $I_n = n\left(\frac{\pi}{2}\right)^{n-1} - n(n-1)I_{n-2}$, n being a positive

integer greater than 1.

Hence evaluate I6.

4+3

B. (a) Answer any two questions:

4×2

(i) Evaluate :
$$\int_{0}^{\pi} \frac{x \sin x}{1 + \sin^2 x} dx$$
.

(ii) Evaluate:
$$Lt_{n\to\infty} \left\{ \left(1+\frac{1}{n}\right) \left(1+\frac{2}{n}\right) ... \left(1+\frac{n}{n}\right) \right\}^{\frac{1}{n}}.4$$

(iii) Evaluate

$$\int_{2}^{4} f(x) dx, \text{ where } f(x) = |x-2| + |x-3|.$$

(b) (i) Define Gamma function and hence find the

value of
$$\int_{0}^{\infty} e^{-x^2} dx$$

(ii) Assuming $\Gamma(m) \Gamma(1-m) = \pi \csc m\pi$, 0 < m < 1,

evaluate
$$\Gamma(\frac{1}{9}) \ \Gamma(\frac{2}{9}) \ \Gamma(\frac{3}{9}) \ ... \ \Gamma(\frac{8}{9})$$
 3

6. Answer any one question:

8×1

(a) (i) Find the area enclosed by the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

(ii) Find the length of the arc of the parabola $y^2 = 12x$ measured from the vertex to erc extremity of the latus rectum.

- (i) Find the volume of the solid generated by the cycloid $x = a(1 + \cos\theta)$, $y = a(\theta + \sin\theta)$ about the y-axis. 4
 - Find the surface of a sphere generated by the circle $x^2 + y^2 = a^2$ about the y-axis.
- 7. Answer any one question:

 $_{4}\times 1$

- (a) Evaluate $\iint (x^2 + y^2) dx dy$ over the region bounded by $x \ge 0$, $y \ge 0$ and $x + y \le 2$ 4
- (b) Evaluate $\iiint (x^2 + y^2 + z^2) dxdydz$ taken throughout the sphere $x^2 + y^2 + z^2 \le 4$ 4

Group-C

[Marks: 18]

8. Answer any two questions:

8×2

(i) Solve the differential equation:

4

- $\cos x \frac{dy}{dx} y \sin x = y^2$
- (ii) Solve the differential equation :

$$y = 2px + p^2$$
, where $p = \frac{dy}{dx}$

(b) (i) Solve:
$$x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = e^{-x}$$

(ii) Solve:
$$(D^2 + 9D + 18)y = \cos x$$
, $D = \frac{d}{dx}$

(c) (i) Solve the simultaneous differential equations :

$$\frac{dx}{dt} + 5x + 2y = e^{t}, \quad \frac{dy}{dt} + 3x + 4y = t$$

(ii) Find the eigen values of the differential equation

$$\frac{d^2y}{dx^2} + \lambda y = 0$$
, $(\lambda > 0)$, satisfying the boundary

conditions
$$y(0) = 0 = y(1)$$
.

 2×1

- Answer any one question :
 - (a) Find the curve whose cartesian sub-tangent is constant.
 - (b) Find the orthogonal trajectories of the system of straight lines y = mx, m being the parameter. 2