NEW

2016

Part-I 3-Tier

MATHEMATICS

(General)

PAPER-I

Full Marks: 90

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group-A

(Classical Algebra)

[Marks: 25]

1. Answer any one question:

 15×1

(a) (i) Show that the product of all values of $(1 + i\sqrt{3})^{\frac{3}{4}}$ is

8.

(ii) Show that,
$$Log(\sqrt{i}) = \frac{1}{4}(8n+1)\pi i$$
.

- (iii) Find the equation whose roots are the n-th powers of those of the equation $x^2 2x + 4 = 0$.
- (b) (i) If the equation $x^5 10a^3x^2 + b^4x + c^5 = 0$ has three equal roots, then show that $ab^4 9a^5 + c^5 = 0$.
 - (ii) Express the matrix $A = \begin{pmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{pmatrix}$ as a sum of two

matrices, of which one is symmetric and the other is skew-symmetric.

- (iii) Find A and B when $A + B = 2B^T$ and $3A + 2B = I_3$ when I_3 represents identify matrix of order 3.
- 2. Answer any one question:

 8×1

(a) (i) Show that,

$$\begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & a+b & a+c \\ 1 & b+a & 0 & b+c \\ 1 & c+a & c+b & 0 \end{vmatrix} = -4(ab+bc+ca).$$

- (ii) Solve the equation $x^4 9x^3 + 28x^2 + 24 = 0$ by Ferrari's method.
- (b) (i) If $\tan \log (x + iy) = a + ib$, where $a^2 + b^2 \neq 1$, then

prove that
$$\tan \log(x^2 + y^2) = \frac{2a}{1 - a^2 - b^2}$$
.

(ii) If
$$A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$
, show that $A^2 - 2A + I_2 = 0$. Hence find A^{13327} .

3. Answer any one question :

 2×1

- (a) If A be a skew-symmetric matrix of order n and P be an n×1 matrix, then prove that P^tAP = 0.
 2
- (b) Use Descartes' rule of sign to show that the equation $x^8 + x^4 + 1 = 0$ has no real root.

Group B

(Modern Algebra)

[Marks: 20]

4. Answer any two questions:

 8×2

- (a) (i) Define group. Show that the set Z of all integers forms a group under the binary operation * defined by a * b = a + b + 1; a,b∈Z. Is it abelian group?
 Justify.
 - (ii) If f: A → B and g: B → C be two mappings such that gof: A → C is injective, then prove that f is injective.
- (b) (i) Define cyclic group with example. Show that every subgroup of a cyclic group is cyclic.

٧.

Show that every group of order 4 is abelian.

3

(c) (i) State Cayley-Hamilton theorem. Use Cayley-Hamilton theorem to compute A^{-1} where $A = \begin{bmatrix} 7 & 2 \\ 4 & 3 \end{bmatrix}$.

3

Prove that every field is an integral domain.

5. Answer any one question:

 4×1

(i) Show that $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 2 & 6 & 5 \end{pmatrix}$ is an even permuta-

tion and $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 2 & 6 & 7 & 5 \end{pmatrix}$ is an permutation. 2

- (ii) Let $S = \{1, 2, 3\}$ and $T = \{1, 4, 5\}$. Write down a bijective mapping of S into T. 2
- (b) Let G be a group and a, $x \in G$ be any two elements of G. Then, show that O(a) and $O(x^{-1}ax)$ are equal.

Group C

(Analytical Geometry)

| Marks : 30 |

6. Answer any one question :

15×1

(i) If the straight lines $ax^2 + 2hxy + by^2 = 0$ are two sides (a) of a Parallelogram and the straight line lx + my = 1

be one of its diagonal, then show that the equation of the other diagonal is y(bl - hm) = x(am - hl). 8

- (ii) Reduce the equation $6x^2 5xy 6y^2 + 14x + 5y + 4 = 0$ into its cenonical form and hence find the nature of the conic. 7
- (b) (i) Find the equation of the plane which passes through the point (2, 1, -1) and is orthogonal to each of the planes x y + z = 1 and 3x + 4y 2z = 0.
 - (ii) Find the equation of the cone whose vertex is at the origin and which contains the curve given by $x^2 y^2 + 4ax = 0$, x + y + z = b.
 - (iii) Fine the polar equation of the chord joining the two points on the parabola $\frac{2a}{r} = 1 + \cos\theta$ with $(\alpha \beta)$ and $(\alpha + \beta)$ as their vectorial angles.
- 7. Answer any one question:

8×1

- (a) (i) If the normal be drawn at one extremity $(l, \frac{1}{2}\pi)$ of the latus rectum PSP' of the conic $\frac{l}{r} = 1 + e\cos\theta$ where S is the Pole, then show that the distance from the focus S of the other point in which the nor
 - mal meets the conic is $\frac{l(1+3e^2+e^4)}{1+e^2-e^4}.$
 - (ii) Show that the three points (-1, 5, 3), (5, 1, 5) and (8, -1, 6) are collinear.

- (b) (i) Show that straight lines whose directions cosines are given by 2l + 2m n = 0 and mn + nl + lm = 0 are at right angles.
 - (ii) Find the equation of the sphere which passes through the origin and touches the sphere $x^2 + y^2 + z^2 = 56$ at the point (2, -4, 6).
- 8. Answer any one question:

 4×1

(a) (i) If r_1 and r_2 are two mutually perpendicular radius vectors of the ellipse $r^2 = \frac{b^2}{1 - e^2 \cos^2 \theta}$, prove that

$$\frac{1}{r_1^2} + \frac{1}{r_2^2} = \frac{1}{a^2} + \frac{1}{b^2}.$$

(ii) If PSP' be the focal chord of a conic. Show that $\frac{1}{SP} + \frac{1}{SP'} = \frac{2}{l}$, where l is the semi-latus rectum.

2

- (b) Find the equation of the cylinder whose generaling line is parallel to the z-axis and the guiding curve is $x^2 + y^2 = z$, x + y + z = 1.
- 9. Answer any one question :

 3×1

(a) Find the bisectors of the angles between the straight lines $2x^2 + 5xy + 2y^2 + 15x + 18y + 28 = 0$.

(b) Find the locus of the poles of chords of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ whose mid-point lies on the straight line x + y = 1.

Group D

(Vector Algebra)

[Marks : 15]

10. Answer any one question:

 8×1

(a) (i) For any three vectors α , β , γ prove that

$$\overrightarrow{\alpha} \times \left(\overrightarrow{\beta} \times \overrightarrow{\gamma} \right) = \left(\overrightarrow{\alpha} \cdot \overrightarrow{\gamma} \right) \overrightarrow{\beta} - \left(\overrightarrow{\alpha} \cdot \overrightarrow{\beta} \right) \gamma.$$

- (ii) If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ is such that $\vec{a} + \lambda \vec{b}$ is perpendicular to c, then find the value of λ .
- (b) (i) If a unit vector \overrightarrow{a} makes angles $\frac{\pi}{3}$ with \widehat{i} , $\frac{\pi}{4}$ with \widehat{j} and acute angle θ with \widehat{k} , then find the value of θ and hence find the components of \overrightarrow{a} .
 - (ii) Find the area of the triangle with ventices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5) using vector method.

1

11. Answer any one question:

- 4×1
- (a) Prove that $\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b}, & \overrightarrow{b} \times \overrightarrow{c}, & \overrightarrow{c} \times \overrightarrow{a} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a}, & \overrightarrow{b}, & \overrightarrow{c} \end{bmatrix}^2$.
- (b) Find $\begin{vmatrix} \overrightarrow{x} \\ x \end{vmatrix}$, if \overrightarrow{p} is a unit vector and $\begin{pmatrix} \overrightarrow{x} \overrightarrow{p} \\ x p \end{pmatrix}$. $\begin{pmatrix} \overrightarrow{x} + \overrightarrow{p} \\ x + p \end{pmatrix} = 80$.
- 12. Answer any one question :

- 3×1
- (a) If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ then show that $\begin{pmatrix} \overrightarrow{a} \overrightarrow{d} \end{pmatrix}$ is parallel to $\begin{pmatrix} \overrightarrow{b} \overrightarrow{c} \end{pmatrix}$, where $\overrightarrow{a} \neq \overrightarrow{d}$ and $\overrightarrow{b} \neq \overrightarrow{c}$.
 - 3
- (b) Find the equation of the plane through the points (3, 2, 0), (1, 3, -1) and (0, -2, 3).