NEW ## Part II 3-Tier 2015 ### **ELECTRONICS** (Honours) PAPER-VA (PRACTICAL) Full Marks: 50 Time: 3 Hours The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. Illustrate the answers wherever necessary Answer any one question. # Group-A ## (Electrical) 1. Determination of self inductance of a coil by Anderson's bridge: (a) Theory and circuit diagram. 3+4 (b) Circuit implementation. 3 (c) Data for measurement of resistance of the coil (d.c. balance). 6 2. 3. | (d) | Data for measurement of self inductance of the co
(a.c. balance) for three capacitors. | oil
2 | | |---|---|------------------------|--| | (e) | Drawing of r vs. $\frac{1}{C}$ graph. | 3 | | | (f) | Calculation of self inductance. | 4 | | | Drawing of e-t curve, determination of thermoelectri
power of a thermocouple and measurement of unknown
temperature using it: | | | | | (a) | Theory and circuit diagram. 3- | -3 | | | (b) | Calculation of the resistance connected in series with potentiometer. | th
2 | | | (c) | (Resistance of the potentiometer is to be supple Circuit implementation. | d).
2 | | | (d) | not junction been con a mine and a | of
old
13 | | | (e) | Data for unknown temperature (specified by t examiner). | he
3 | | | (f) | Drawing of e-t curve. | 4 | | | (g) | Determination of thermoelectric power at temperature mentioned by the examiner. | а
3 | | | (h) | Determination of unknown temperature. | 2 | | | | rification of Norton's Theorem by using a resist neatstone bridge network : | ive | | | (a) | Theory and circuit diagram. | + 4 | | | (b) | Circuit implementation. | 2 | | | (c) | Measurement of load voltage (V_L) and load current for 8 different load resistances. | (I _L)
8 | | plot. 4 5. (d) To plot I_L against V_L and to find I_N and R_N from the (e) Measurement of In and Rn from direct experiment and to compare these values with those obtained in (d). (f) To calculate the power (P_L) dissipated in the load (R_L) and to draw a graph between PL and RL. Wheatstone bridge network: 4. Verification of Thevnin's Theorem by using a resistive 2+2+1 | (a) | Theory and circuit diagram. | 3+3 | | |---|---|--------------------------------|--| | (b) | Circuit implementation. | 2 | | | (c) | Data for load voltage (V_L) vs. load curren f | t (I _L) graph
r | | | | 8 different load resistances. | 8 | | | (d) | To plot I_L against V_L and to find $I_{\mbox{\scriptsize Th}}$ and the plot. | d R _{Th} from
4+2 | | | (e) | Measurement of I_{Th} and R_{Th} from direct and to compare these values with those (d). | | | | (f) | To calculate the power (P_L) dissipated in the and 'to draw a graph between P_L and to make comment on the graph. | | | | Measurement of magnetic flux density between two pole
pieces of an electromagnet by a search coil, a ballistic
galvanometer and à standard solenoid (constants of
search coil and stàndard solenoid will be supplied): | | | | | (a) | Theory and circuit diagram. | 3+3 | | | (b) | Circuit implementation. | 3 | | | (c) | Data for I-d graph (three readings). | 3 | | | 5/B. | Sc./Part-II(H)/3T(N)/Electro.(Prac.)/5A | (Turn Over) | | | (d) | Drawing of I-d graph. | 3 | | |--|---|--------------|--| | (e) | Ballistic throws for six different magnetizing cur of the electromagnet. | rents
12 | | | (f) | Calculation of B. | 4 | | | (g) | Drawing I-B graph. | 4 | | | To draw the resonance curve of a series L-C-R circuit, find the Q-factor of the circuit and to draw Drawing Z_L -f and $1/Z_c$ -f curves : | | | | | (a) | Theory and circuit diagram. | 3+2 | | | (b) | Circuit implementation. | 2 | | | (c) | Readings of V_R , V_L and V_C at different frequendata for $I-f$, Z_L-f and $1/Z_C-f$ curves). | cies :
15 | | | (d) | Drawing resonance curve (I-f curve). | 4 | | | (e) | Calculation of Q factor from resonance curve. | 3 | | | (f) | Drawing Z_L - f and $1/Z_C$ - f curves. | 3+3 | | # Marks distribution 1. Experiment (Group A) : 35 Marks 6. 2. Laboratory Note Book : 05 Marks 3. Viva-voce : 10 Marks Total : 50 Marks ١. #### NEW # Part II 3-Tier 2015 ## **ELECTRONICS** (Honours) PAPER-VB (PRACTICAL) Full Marks: 50 Time: 3 Hours The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. Illustrate the answers wherever necessary. Answer any one question. ### Group-B ## (Solid State Devices and Circuits) | 1. | Study of a P-N junction diode: | * | | |----|---------------------------------|----|-----| | | (a) Theory and circuit diagram. | 78 | 3+2 | (b) Circuit implementation on a bread board. 2 (c) Data for forward bias characteristic of the diode. (d) Drawing forward bias characteristic curve. 4 5 (e) Determination of cut-in voltage, static resistance and dynamic resistance from the graph. 2+3+3 ideality factor from InI vs. V graph. (g) Determination of reverse saturation current and (f) Drawing InI vs. V graph. 2. 3. 5 3+3 | | e of diodes in half wave rectifier circuit and bridge tifier circuit: | | | |-----------------------|---|--|--| | (a) | Working formula for ripple factor. 2 | | | | | Circuit diagrams of half wave and bridge rectifier circuits. 2+3 | | | | (c) | Implementation of the circuits on bread board. 2+2 | | | | (d) | With a suitable input A.C. signal, displaying the output waveforms from half wave and bridge rectifier circuits in a CRO monitor (to be verified by the examiner). 3+3 | | | | (e) | Determination of ripple factors of the outputs of half wave and bridge rectifiers with the help of A.C. and D.C. voltmeters. 3+3 | | | | (f) | Determination of ripple factors of the outputs of half wave and bridge rectifiers with the help of A.C. and D.C. voltmeters with a single capacitor filter in each case. 3+3 | | | | (g) | Comparison of the results of (d) to those of (e) with proper explanation. 3+3 | | | | Study of Zener diode: | | | | | (a) | Theory. 3 | | | | (b) | Circuit diagram and implementation of circuit on bread board for reverse bias characteristics, load regulation and line regulation. 2+2+2 | | | | (c) | Data for reverse bias characteristic of the Zener diode. | | | | (4) | Drawing reverse hiss characteristic curve. 3 | | | characteristic curve. characteristics. characteristics. regulations. (f) (e) Determination of breakdown voltage from reverse bias (g) Drawing Load regulation and Line regulation (h) Calculation of % of regulation for Load and Line Data for Load regulation and Line regulation 3+3 3+3 3+3 | | 4. | | construct a regulated power supply with a pownsistor as pass element and an OPAMP as comparator | | |---|----|-----|---|---------| | | | (a) | Working formula and circuit diagram. 3+ | 4 | | | | (b) | Calculation of components. | 6 | | 4 | | (c) | Circuit implementation on bread board (to be verified by the examiner). | ed
6 | | | | (d) | Data for Load regulation and Line regulation characteristics. | | | | | (e) | Drawing Load regulation and Line regulation characteristics. | | | | 5. | | determine the hybrid parameters of an n-p-n transisting D.C. and A.C. sources: | or | | | | (a) | Theory and circuit diagram for static outports characteristics in CE configuration. | | | | | (b) | Circuit implementation for static outports characteristics. | ut
2 | | Ĺ | | (c) | Data for output characteristics with specified bacurrents. | se
6 | | | | (d) | Drawing output characteristics. | 6 | | | | (e) | Determination of from h_{fe} and h_{oe} from output are input characteristics. | | | | (f) | Theory and circuit diagram for determination and h_{oe} with A.C. source. | of h _{fe}
2+3 | |----|---|--|---------------------------| | | (g) | Circuit implementation. | 3 | | | (h) | Determination of h_{fe} and h_{oe} . | 2+2 | | 6. | 5. To draw the characteristics of photo electric cell a
determine the stopping potential of the material of
cathode (for lights of three given frequencies of
incident light): | | | | | (a) | Theory and circuit diagram. | 3+2 | | | (b) | Circuit implementation. | 2 | | | (c) | Photo current vs. voltage data with intensity parameter for three given wavelengths of inclight (for three intensities with each colour > | as a
ident | | | total $3\times3 = 9$ curves) | | | | | | | 16 | | | (d) | Drawing photo current vs. voltage curves intensity as a parameter for three given waveler of incident light (for three intensities with colour \rightarrow total $3\times3=9$ curves). | ngths | | | (e) | Determination of stopping potentials for the given wavelengths. | three
3 | ## Marks distribution 1. Experiment (Group B) : 35 Marks 2. Laboratory Note Book : 05 Marks 3. Viva-voce : 10 Marks Total : 50 Marks