NEW

3-Tier

2015

ELECTRONICS

(General)

PAPER-III

(PRACTICAL)

Full Marks: 100

Time: 3 Hours

The figures in the margin indicate full Marks.

Group—A (Semiconductor Devices and Circuits)

Answer any one question.

1. Construct a circuit to study the current-voltage (I - V) characteristics curve of a forward biased p-n junction diode. Determine the cut-in-voltage. Calculate the dynamic resistance and compare with theoretical values. (Assume $\frac{kT}{q} = 0.026 V$.)

(Th-5, Ckt-5, Data-8, Graph-6, Calculation-2+2+2, Discussion-5.)

2. Study the reverse characteristics of a Zener diode. Specify the Zener region. Find Zener break-down voltage. Calculate dynamic resistance.

(Th-5, Ckt-5, Data-10, Graph-5, Calculation-2+2+2, Discussion-4.)

3. Study the load regulation curves of a Zener diode considering (a) $V_S = 1.25 \ V_Z$ and (b) $V_S = 1.5 \ V_Z$ where $V_S =$ supply voltage, $V_Z =$ Zener break-down voltage. Calculate the percentage regulation in each case.

(Th-5, Ckt-5, Data-8, Graph-5, Calculation-4+4, Discussion-4.)

4. Study line regulation of a Zener diode. Consider two different values of load current. Calculate regulation factor in each case.

(Th-5, Ckt-5, Data-12, Graph-6, Calculation-4, Discussion-3.)

5. Construct a full-wave rectifier with a centre-tapped transformer and a \prod filter. Plot $I_L - V_L$ graph for at least two different input voltages. Calculate percentage regulation of the rectifier.

(Th-5, Ckt-5, Data-12, Graph-6, Calculation-4, Discussion-3.)

6. Construct the bridge rectifier with a π filter. Plot $I_L - V_L$ graph for two input voltages. Calculate percentage regulation in both cases.

(Th-5, Ckt-5, Data-12, Graph-6, Calculation-5, Discussion-2.)

7. Draw the output characteristic curve of a given n-p-n transistor in CE mode for three different values of base current.

(Th-5, Ckt-5, Data-12, Graph-5, Calculation-4, Discussion-4.)

8. Draw the input characteristic curves of the given n-p-n transistor in CE mode for two values of V_{CE} . Calculate h_{ie} in each case.

(Th-5, Ckt-5, Data-12, Graph-6, Calculation-4, Discussion-3.)

Group-B

(Instrumentation and Digital Electronics)

Answer any one question.

9. Construct an astable-multivibrator with 555 timer for a suitable given frequency. Study the waveform on a CRO and measure its duty cycle.

(Th-10, Ckt-10, Data + Calculation of duty cycle-10, Discussion-5.)

10. Measure the output offset voltage of an IC-741 OPAMP for different feedback resistance. Implement the circuit on a bread board and show the results.

(Th-8, Ckt-5, Data-14, Calculation-6, Discussion-2.)

11. Construct an adder amplifier with IC-741 and measure the output voltage for at least five input voltages. Measure output voltage V_S in terms of differential input voltages (V₊ - V₋).

(Th-10, Ckt-5, Data-10, Graph-5, Calculation-3, Discussion-2.)

 Construct an integrator circuit with IC-741. Measure output voltages for at least five input voltages. Plot output voltage vs. input voltage curve.

(Th-8, Ckt-5, Data-10, Graph-5, Calculation-3, Comparison of output, voltage with theoretical value-2, Discussion-2.)

13. Construct a half-adder circuit with minimum number of gates and verify its operation.

(Th-8, Ckt-6, Ckt implementation-6, Data-10, Discussion-5.)

14. For the logic expression :

$$Y = \overline{A}B + \overline{B}A$$

Realise the operation using minimum number of NAND gates only.

Obtain the truth table.

Name the operation performed.

(Th+Ckt-12, Implementation-8, Data-12, Discussion-3.)

15. Construct a J-K flip-flop with minimum number of gates and verify its operation.

(Th+Ckt-12, Implementation-10, Data-10, Discussion-3.)

16. Design a circuit using available gates to realise the function:

$$Y = (A + BC)(B + C\overline{A})$$

Obtain its truth table and specify the number of gates required.

(Th+Ckt-12, Implementation-8, Data-12, Discussion-3.)

Marks Distribution

35 Group A Experiment

35 Group B Experiment

20 Viva-Voce (10+10) 10

Laboratory Note Book (5+5)

100 Total: