OLD

2015

Part I 3-Tier

ELECTRONICS

PAPER-I

(General)

Full Marks: 100

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

Answer any two questions.

2×15

- 1. (a) The energy levels of an atom produce energy bands in a solid. Explain.
 - (b) What are the factors determining: (i) the width of an energy band in a crystal and (ii) the number of energy levels in the band?

 $2\frac{1}{2} \times 2$

- (c) Draw the energy-band diagram and position of Fermi level for: (i) p-type material, (ii) n-type material and (iii) unbiased p-n junction. 2x3
- 2. (a) How is a transistor represented as a two-port device?
 - (b) Define the hybrid parameters for a basic transistor circuit in any configuration and give its hybrid model.
 4+2
 - (c) What is Darlington connection? Compare between an emitter follower and a Darlington pair. 3+3
- (a) Explain the concept of feedback in amplifiers.
 Find out an expression for the voltage gain with feedback.
 - (b) Explain under what conditions a positive feedback amplifier gives oscillations.3
 - (c) Draw the circuit diagram of a Wien-bridge oscillator with an operational amplifier as an active element. Mention the advantages and disadvantages of the Wien-bridge oscillator. 3+3

4. (a) How are the width of space-charge region and the barrier height affected when a p-n junction is:

(i) forward-biased, (ii) reverse-biased?

 $2\frac{1}{2} \times 2$

- (b) Calculate the ratio of the current for a forward bias of 0.06V to the current for the same value of reverse bias applied to a Ge p-n diode at 27°C.
- 5. (a) Draw the circuit diagram for studying the static characteristics of a p-n-p transistor operation in CE mode.
 2
 - (b) Sketch two important characteristics for the CE mode and explain them. 3×2
- 6. (a) Compare between a FET and a BJT.
 - (b) An n-channel JEFT has $I_{DSS} = 12 \text{mA}$ and pinch-off voltage $V_P = -4 \text{V}$. Find the drain current for $V_{GS} = -2 \text{V}$. If the transconductance G_{mo} of a JFET with the same I_{DSS} at $V_{GS} = 0$ is 4 millimho, find the pinch-off voltage.

۶

- 7. (a) Draw a circuit diagram of a push-pull power amplifier.
 - (b) Obtain an expression for the maximum efficiency of the circuit.
- 8. (a) Draw the structure and device symbol of a triac.
 2+1
 - (b) Discuss the principle of operation of triacs and name their uses. 4+2
- 9. (a) Find the Thevenin and Norton equivalent circuit between the terminals a, b for the network of Fig. 1:
 3+3

Fig. 1

- (b) Determine the resistance to be connected across a, b in Fig. 1 to dissipate maximum power and calculate the maximum power.

 1+1
- 10. (a) A battery of voltage V₀ is switched on to a series combination of a resistor R and an initially uncharged capacitor c at time t = 0. Calculate (i) the energy stored in the capacitor when it is fully charged; (ii) the energy dissipated in the resistance during the charging of the capacitor; (iii) the energy supplied by the battery in charging the capacitor.
 - (b) What do you mean by the time constant of the circuit?
- 11. (a) Derive expressions for voltage gain and the input impedance of an inverting amplifier using an OP AMP.

$$2\frac{1}{2} + 2\frac{1}{2}$$

(b) Draw the circuit of voltage-to-current converter using OP AMP and explain its operation.

$$1\frac{1}{2} + 2\frac{1}{2}$$

Group-C

Answer any five questions.

5×4

12. What is percentage voltage regulation? Show that for both half-wave and full-wave rectifiers, the percentage voltage regulation = (R_f/R_L) × 100%, where R_f is the forward resistance of a diode and R_L is the load resistance.

$$1\frac{1}{2} + 2\frac{1}{2}$$

- 13. Define α and β for a transistor and obtain a relationship between them.
- 14. Explain different losses and leakages of a transformer.

ł

15. In the circuit of Fig. 2, the switch K_2 is open and the switch K_1 is closed at time t=0. At time $t=t_0$, the switch K_1 is open and the switch K_2 is simultaneously closed. Sketch the variation of the inductor current i as a function of time.

Fig. 2

- 16. What is the desired position of the Q-point for a minimum distortion and why? Mention the factors that affect the bias stability of a transistor.
- 17. Reduce the network of Fig. 3 to an equivalent T network with proper explanation.

Fig. 3

18. The frequency of a Hartley oscillator is to vary from 60 - 120 KHz. The tuning capacitor can be changed from 100 - 400 pF. The transistor employed in the circuit has $h_{fe} = 90$ and Δ_{re} (i.e. $h_{le}h_{oe} - h_{fe}h_{re}$) = 0·2. Find the values of the inductances, neglecting the mutual inductance between them.

19. Explain the use of OP-AMP as a differentiator.

[Internal Assessment - 10]