NEW

Part-III 3-Tier
2016
ELECTRONICS

(General)

PAPER-IVC

(PRACTICAL)

Full Marks: 15

Time: $1\frac{1}{2}$ Hours

The figures in the margin indicate full Marks.

Two experiments are to be performed, Experiments will be selected by Lucky Draw.

 2×5

- Write an assembly language programme using μp 8085 to multiply one 8 bit number with another 8 bit number stored at two consequtive memory locations using shift and add method.
- 2. Write an assembly language programme using μp 8085 to find the highest number in a series of data. The length is given in memory location X and the series starts from X+1. Store the result in Y.

- 3. Write an assembly language programme using μp 8085 to find the number of negative, Positive and zero elements in a series of data length of the Series of data is at X and the series starts at X+1. Store the result at Y onwards.
- 4. Write an assembly language program using μp 8085 to interchange two data bytes stored at memory location X and Y, using indirect register addressing.
- 5. Write an assembly language programme using μp 8085 to find the 10's complement of a BCD number stored at two memory locations.
- 6. Write an assembly language programme using μp 8085 to calculate the sum of series of numbers (8-bit). So ignore carries store the sum at some memory location.
- 7. Write an assembly language programme using μp 8085 to count number of 1's in the content of D register and store the count in B register.
- 8. Write an assembly language programme in μ p 8085 to find the square of a given number from a memory location and store the result in another memory location.

- 9. Write an assembly language programme in μp 8085 to transfer ten bytes of data from one memory to another memory block.
- 10. Write an assembly language program in μp 8085 to divide 16 bit number stored in memory locations X₂00H and X₂01H by the 8 bit number stored at memory location X₂02H. Store the quotient in memory locations X₃00H and X₃0H1 and remainder in memory locations X₃03H and X₃03H.

Distribution of Marks

	Marks	
	:	10
	:	3
	:	2
Total	:	15
	Total	