Total Pages—4 C/16/B.Sc./Part-Into// 51/0//

2016
OLD
Part-II 3-Tier
ELECTRONICS
(General)
PAPER—III

(PRACTICAL)
Full Marks: 100

Time: 3 Hours

The figures in the margin indicate full Marks.

Group-A

(Semiconductor Devices and Circuits)

Answer any one question.

1. Construct a circuit to study the current voltage (I-V) characteristics curve of a forward biased P-N junction diode. Determine the cut-in voltage. Calculate the dynamic resistance and compare with theoretical value. (Assume KT/q = 0.026V)

(Theory-5, Circuit-5, Data-8, Graph-6, Calculation-2+2+2, Discussion-5)

2. Study the reverse characteristics of a Zener-diode:
Specify the Zener region. Find Zener break-down voltage.
Calculate dynamic resistance.

) --

(Theory-5, Circuit-5, Data-10, Graph-5, Calculation-2+2+2, Discussion-4)

(Turn Over)

 Study line regulation of a Zener diode. Consider two different values of zener current. Calculate regulation factor in each case.

(Theory-5, Circuit-5, Data-12, Graph-6, Calculation-4, Discussion-3)

4. Study the load regulation curves of a zener diode considering (a) $V_s = 1.3 \ V_z$ and (b) $V_s = 1.5 \ V_z$. where $V_s = \text{supply voltage}$, $V_z = \text{zener break down voltage}$. Calculate the percentage regulation in each case.

(Theory-5, Circuit-5, Data-8, Graph-5, Calculation-4+4, Discussion-4)

5. Construct a full-wave rectifier with a centre tapped transformer and a II filter.

Plot $I_L - V_L$ graph for at least two different input voltages. Calculate percentage regulation of the rectifier.

(Theory-5, Circuit-5, Data-12, Graph-6, Calculation-5, Discussion-2)

6. Draw the Input characteristic curves of a given n-p-n transistor in CE mode for two values of $V_{\rm CE}$. Calculate $h_{\rm ie}$ in each case.

(Theory-5, Circuit-5, Data-12, Graph-6, Calculation-4, Discussion-3)

7. Draw the output characteristic curve of a given n-p-n transistor in CE mode for three different values of base currents. Calculate $h_{\rm fe}$.

(Theory-5, Circuit-5, Data-12, Graph-5, Calculation-4, Discussion-4)

8. Construct the bridge rectifier with a Π filter. Plot I_L - V_L graph for two input voltages. Calculate percentage regulation in both cases.

(Theory-5, Circuit-5, Data-12, Graph-6, Calculation-5, Discussion-2)

Group-B

(Instrumentation and Digital Electronics)

Answer any one question.

9. Construct an astable-multivibrator with 555 times for a suitable given frequency. Study the waveform on a CRO and measure its duty cycle.

(Theory-8, Circuit-8, Data-10, Calculation of duty cycle-4, Discussion-5)

10. Measure the output offset voltage of an IC-741 OPAMP for different feedback resistances. Implement the circuit on a bread board and show the results.

(Theory-8, Circuit-5, Data-14, Calculation-6, Discussion-2)

11. Construct an adder amplifier with IC-741, and measure the output voltage for at least five input voltage. Measure output voltage V_s in terms of different positive and negative input voltage.

(Theory-10, Circuit-5, Data-10, Graph-5, Calulation-3, Discussion-2)

12. Construct an integrator circuit with IC-741. Measure output voltages for at least five input voltages. Plot output voltage versus input voltage curve.

(Theory-8, Circuit-5, Data-10, Graph-5, Calculation-3, Comparison of output voltage with theoretical value-2, Discussion-2)

13. The logic expression $Y = \overline{A}B + \overline{A}B$.

Realise the operation using minimum number of NAND gates only.

Obtain the truth table.

Name the operation performed.

(Theory-5, Circuit-7, Implementation-10, Data-10, Discussion-3)

14. Design a circuit using available gates to realise the function $Y = (A + BC)(\overline{B} + CA)$.

Obtain the truth table and specify the minimum number of gates required.

(Theory-6, Circuit-6, Implementation-6, Data-12, Discussion-3)

15. Construct a half-adder circuit with minimum number of gates and verify its operation.

(Theory-8, Circuit-6, Circuit Implementation-6, Data-10, Discussion-5)

16. Construct a J-K flip-flop with minimum number of gates and verify its operation.

(Theory-8, Circuit-6, Implementation-8, Data-10, Discussion-3)

Marks Distribution

Group A Experiment		:	35
Group B Experiment		:	35
Viva-Voce (10+10)		:	20
Laboratory Note Book	(5+5)	:	10
*	Total	;	100