Part II 3-Tier

2015

COMPUTER SCIENCE

(Honours)

PAPER-VA (Set-I)

(PRACTICAL)

Full Marks: 50

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Answer any two questions.

Section—I (Analog Circuits)

Answer any one question:

20

1. Design a full wave bridge rectifier. Study its voltage regulation. Calculate its ripple factor and percentage of regulation.

[CKT-6, Data-10, Calculation-4]

2. Study line regulation and load regulation using a Zener diode.

[CKT-5, Data-10, Discussion-5]

3. Study the use of diodes as clipper and clamper.

[CKT-8, Data-10, Discussion-2]

4. Design a square wave oscillator using 555 timer.

[CKT-8, Data-8, Discussion-4]

Measure input offset voltage and input offset current of an OPAMP (IC-741).

[CKT-6, Data-10, Calculation-4]

6. Study the use of OPAMP as inverting and non-inverting amplifier.

[CKT-6, Data-8, Drawing of graphs-4, Discussions-2]

- Study the use of OPAMP as adder and differentiator.
 [CKT-8, Data-8, Discussions-4]
- 8. Study the use of OPAMP as subtractor and integrator.

 [CKT-8, Data-8, Discussions-4]
- 9. Design a high pass filter using an OPAMP.

[CKT-6, Data-10, Discussions-4]

-

Section—II

(Digital Circuits)

Answer any one question:

20

1. Construct and study AND, OR, NOT gates using diodes and transistor.

[CKT-9, Data-7, Discussion-4]

2. Design a circuit to convert BCD numbers to corresponding Gray Codes.

[Theory-5, CKT-10, Data-5]

3. Design a 4: 1 MUX using NAND gates.

[Theory-5, CKT-10, Data-5]

4. Design a 'Seven Segment display' unit.

[CKT-10, Data-6, Discussion-4]

5. Design S-R, J-K and J-K master slave flip-flops using basic gates.

[CKT-12, Data-6, Discussion-2]

6. Design a 4-bit register (shift left and shift right) using flip-flops.

[CKT-12, Data-6, Discussion-2]

7. Design a MOD-12 counter using J-K master slave flip-flop.

[CKT-10, Data-6, Discussion-4]

Laboratory Note Book: 5

Viva Voce: 5

4

Part II 3-Tier

2015

COMPUTER SCIENCE

(Honours)

PAPER-VA (Set-II)

· (PRACTICAL)

Full Marks: 50

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Answer any two questions taking one from each group (Lottery Basis).

Section—I
(Analog Circuits)

[Marks: 20]

Answer any one question.

1. Construct a bridge rectifier with capacitor filter. Plot $(I_L - V_L)$ graph. Hence calculate percentage of regulation.

[Circuit-6, Data-10, Calculation-4]

2. Design an integrator circuit using OPAMP.

[Circuit-6, Data-10, Calculation-4]

3. Design a three bit weighted resistor D/A converter using OPAMP.

[Circuit-6, Data-10, Calculation-4]

Construct an astable Multivibrator circuit using IC 555.
 Measure its frequency and duty cycle by CRO.

[Circuit-6, Data-10, Calculation-4]

5. Design a voltage regulator circuit using transistor and a Zener diode. Study its regulations.

[Circuit-6, Data-10, Calculation-4]

- Design a 4 bit R-2R ladder D/A converter using OPAMP.
 [Circuit-6, Data-10, Calculation-4]
- 7. Design an active high pass filter using IC 741.

 [Circuit-6, Data-10, Calculation-4]

Section-II

(Digital Electronics)

[Marks : 20]

Answer any one question.

1. Construct a BCD adder using IC 7483.

[Circuit-9, Data-7, Discussion-4]

2. Construct a clocked J-K flip-flop by using NAND gates. Verify its operation.

[Circuit-9, Data-7, Discussion-4]

3. Design a circuit to convert BCD numbers to corresponding grey code.

[Circuit-9, Data-7, Discussion-4]

4. Design mod-10 counters and verify its operation.

[Circuit-9, Data-7, Discussion-4]

5. Design a decade counter using J-K master-slave flip-flop.

[Circuit-9, Data-7, Discussion-4]

6. Design a 4:1 MUX using only NAND gates. Also construct 8:1 MUX from 4:1 MUX.

[Circuit-9, Data-7, Discussion-4]

Construct a Half-adder with minimum number of NAND gates and verify its truth table.

[Circuit-9, Data-7, Discussion-4]

8. Design a four bit 2's complement subtractor using 7483 and XOR gate.

[Circuit-9, Data-7, Discussion-4]

Practical Note Book.: 5

Viva-voce: 5

Part II 3-Tier

2015

COMPUTER SCIENCE

(Honours)

PAPER-VB (Set-I)

(PRACTICAL)

Full Marks: 50

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Answer any two questions.

Section-I

3

(Fortran - 77)

[Marks : 20]

(Problem should alloted by lottery basis.)

Answer any one:

20

1. Write a program to find a real root of $x^2 - 5x + 2 = 0$ by Newton Raphson method correct upto 4 decimal places.

2. Solve the following system by Gauss elimination method:

$$2x + 3y + z = 9$$

 $x + 2y + 3z = 6$
 $3x + y + 3z = 8$

20

20

3. Write a program to solve a system of equations by Gauss-Seidel method:

$$10x + y + z = 12$$

 $2x + 10y + z = 13$
 $2x + 2y + 10z = 14$

4. Write a program to find F(x;) by Lagrange interpolation formula from the data $\{x_i, f(x_i)\}$, i = 1, 2,N. Use it to find f(15) from the following data:

x	10	25	47	81
f(x)	14-1321	17-2172	19-1729	21.1892

20

5. Write a program to evaluate
$$\int_{0.1}^{0.9} \left(1 + \frac{\sin x}{x}\right) dx$$
 by Simpson's $\frac{3}{8}$ th rule.

20

6. Write a program to find the root of an equation by bisection method using

$$5x - 4 \sin x - 8 = 0$$
 20

7. Write a program to calculate the coefficient of correlation from a given set of values $\{x_i, y_i\}$, $i = 1, 2, \dots$ N. Use it for

x :	89	86	74	65	63	66	67
y :	82	91.5	84	75	72	70.5	75

20

8. Write a program to search an element from an array of elements using Binary Search technique.

20

9. Solve the following equation using Euler's method for x = 1, by taking h = 0.2:

$$\frac{dy}{dx} = (x + y), y = 1, \text{ when } x = 0.$$

10. Write a program to check whether a given number is a palindrom or not.

20

Section-II

(C-language)

(Problem should alloted by lottery.)

Answer any one:

20

- 1. Write a program to count the number of occurrence of each letter in a user given string.
- 2. Write a program to find all the Armstrong numbers between 100 to 999.
 - 3. Write a program to generate the first 10 positive integers that are divisible by 7.

4.	Write	а	program	to	count	the	number	of	vowel	and
	conso	na	nt in a st	rin	g.					20

5. Write a program to calculate the sum of the n natural numbers using recursion, 1 + 2 + 3 + + n. 20

- Write a program to remove the repeated letters from a given string.
- 7. Write a program to print an array using pointer. 20
- 8. Write a program for reading a string and printing the string in the following form the string is 'MADAM'. Output will be

M

M A

MAD

MADA

MADAM

20

4.

- 9. Write a program to generate non-fibonacci numbers upton.20
- 10. Write a program to generate n random numbers and print which are not prime.

PNB

5 Marks

Viva

5 Marks

Part II 3-Tier

2015

COMPUTER SCIENCE

(Honours)

PAPER-VB (Set-II)

(PRACTICAL)

Full Marks: 50

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Section-I

(Fortran - 77)

[Marks : 20]

(Problem should alloted by lottery basis.)

Answer any one question.

Write a program to find f(x) for a given value of x using Newton's forward interpolation formula from a given set of values {x, f(x)}. Use it to find f(x) for x = 1.05 from the following data:

x	:	1.0	1.1	1.2	1.3	1.4
f(x)	:	0.24197	0.21785	0.19419	0.17137	0.14973

2. Write a program to find the sum of the following series:

$$COS(x) = 1 - \frac{x^2}{\sqrt{2}} + \frac{x^4}{\sqrt{4}} - \frac{x^6}{\sqrt{6}} + \dots \infty$$
 20

- 3. Using Runge Kutta method of order 4 to find the value of y for x = 0.3 in steps of 0.1, if $\frac{dy}{dx} = x^2 + y^2$, given that y = 1 when x = 0.
- 4. Write a program to find the SD and first four moments about mean for a discrete distribution. Test the program using the following data:
 - 24, 2, 18, 74, 40, 61, 15, 90, 31, 14, 8
- 5. Write a program to sort a given set of data by insertion sort technique. Use it for the following:
 - 84, 71, 14, 32, 29, 95, 54, 42, 61, 29, 8
- Write a program to print first 20 non-fibonacci numbers
 20
- 7. Write a program to calculate the root of a given equation by Bisection method:

$$x^3 - 3x - 2 = 0 20$$

8. Evaluate the integration $\int_{0}^{\Pi/4} \sqrt{1-0.162 \sin^2 \theta} \ d\theta$ by Trapezoidal rule using 10 subintervals.

- 9. Write a program to convert a binary number to its equivalent decimal.
- 10. Write a program to determine whether a given year is a leap-year or not.

20

Section-II

(C - Language)

[Marks : 20]

(Problem should alloted by lottery basis.)

Answer any one question.

Write a program to find the value of cosx from the following series. Use it to find the values of cosx for x = 15° & 18° taking terms ≥ 10⁻⁴.

$$COS(x) = 1 - \frac{x^2}{|2|} + \frac{x^4}{|4|} - \cdots$$

2. Write a program to sort a given data set by quick sort method. Use it for the following

- 3. Write a program to print the number of words in a sentence.
- **4.** Write a program to convert a binary number to a HEX number.

- 5. Write a program to calculate first 10 Fibonacci numbers using recursion.
- 6. Write a program to multiply two matrices A and B of order m × n and n × p respectively.
- 7. Write a C program to find the sum of the following series —

$$e^{x^2} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
 20

- 8. Without using any in build function. Write a program to reverse a given string.
- 9. Write a program to display strong numbers between a and b.
- Write an "efficient" program to search a number within an array.

PNB : 05 Marks

Viva : 05 Marks