>

2016

COMPUTER SCIENCE

[Honours]

PAPER - II

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their

own words as far as practicable

Illustrate the answers wherever necessary

[NEW SYLLABUS]

GROUP - A

Answer any two questions:

 15×2

6

1. (a) Draw and describe Master-Slave JK flip-flop using NAND gate.

(b) Prove that

$$(A+B)(\overline{AC}+C)(\overline{B}+AC)=\overline{AB}$$

- (c) What is meant by edge triggering? Give the difference between positive edge triggering and negative edge triggering. 2+3
- 2. (a) Use mathematical induction to show that $1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} 1,$ for all non-negative integers n.
 - (b) Determine whether the sequence $\{a_n\}$, where $a_n = 3n$ for every non negative integer n, is a solution of the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2}.$$
 5

(c) Show that

$$\neg (p \lor (\neg p \land q)) \text{ and } (\neg p \land \neg q)$$

are logically equivalent.

3. (a) With the help of a circuit diagram, explain the working of a half wave rectifier with capacity filter.

5

8

1

	Explain the principle underlying working of	of
	oscillator. Mention the application of R-	
	oscillator.	5 + 1

- 4. (a) What is Data Communication? Write down the different modes of Data flow in Data Communication. 2+5
 - (b) Briefly explain the different layers of OSI model.

GROUP - B

Answer any five questions:

- 5. Draw the circuit of the transistor configurations.
 Why common emitter configuration is mostly used?
 6+2
- 6. Design an 8:1 MUX using two 4:1 MUX and necessary gates?
- 7. Write down the different characteristic of zener diode. Describe the phenomenon of zener break down.

 6+2

 8×5

8.	(a) Define Fan-out and Fan-in.	3
	(b) Simplify using K-map	
	Σ (0, 2, 3, 6, 7, 8, 10, 11, 12, 15).	5
9.	(a) Design of MOD-3 counter.	6
•	(b) What do you mean by positive logic and negative logic?	2
10.	(a) Describe Nyquist Bit rate and Shannon capacity of a channel.	6
et.	(b) What is modem?	2
11.	Prove that if $f: x \to y$ and $g: y \to z$ be two one to one onto function, then gof is also one to one onto function.	
		8
12.	Explain different types of IP addressing and thin thin mark.	8
	GROUP -C	
	Answer any five questions: 4 ×	5
13.	List of advantages of a crystal oscillator.	4
UG/L	/CSC/H/II/16(New) (Continue	ed)

14. Minimize the following functions:	
$f(A, B, C, D) = \Sigma m(2, 3, 8, 10, 11, 12, 13, 14, 15)$	4
15. What is network topology? Briefly explain it.	4
16. Compare TCP and OSI model with suitable diagram.	4
17. Write a short note on seven segment display.	4
18. Write down the triod characteristics.	4
19. Explain the working principal of 1:4 demultiplexer.	4

[Internal Assessment: 10 Marks]