#### 2015

#### **CHEMISTRY**

[Honours]

PAPER - VI

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

# Write answers of the questions of each Group in separate scripts

(Organic)

[ Marks: 45 ]

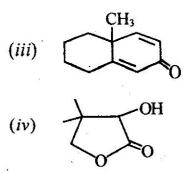
Time: 2 hours

GROUP - A(a)

### Answer any one question:

 (a) β-D-Glucopyranose undergoes oxidation with Br<sub>2</sub>/H<sub>2</sub>O at a faster rate than α-D-glucopyranose. — Explain.

- (b) What are sulpha drugs? Give the synthesis of sulphanilamide from aniline. 1+2
- (c) Give retrosynthetic analysis and an efficient synthesis of any two of the following compounds:  $2\frac{1}{2} \times 2$


(i) 
$$\underbrace{Mu^t}_{O}$$
  $Bu^t$ 

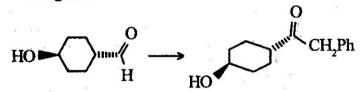
(d) Identify the products with proper stereochemistry:

(Continued)

- (e) Buta-1, 3-diene does not undergo Diels
  -Alder reaction when tert-butyl groups are
  present at the 2 and 3-positions. Explain. 2
- 2. (a) Explain with proper examples the meaning of the term "Two Group C-X Disconnection". 2
  - (b) Give synthetic equivalents corresponding to the following synthons:

(c) Describe the synthesis of any two of the following compounds with proper retrosynthetic analysis:  $2\frac{1}{2} \times 2$ 




- (d) Write the structure of L-Proline.
- (e) Chymotrypsin is an important hydrolytic enzyme. What are the structures and names of two α-amino acids responsible for the hydrolysis reaction?
- (f) What happens when;  $1\frac{1}{2}$ 
  - (i) an ether solution diazomethane is slowly added to a warm solution of the acid chloride (RCOCl).
  - (ii) a cold solution of the acid chloride (RCOCl) is added slowly to diazomethane in cold ether solution.

(Continued)

### GROUP - A(b)

### Answer any two questions:

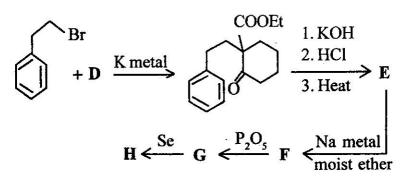
3. (a) How would you carry out the following transformation using Me<sub>3</sub>SiCl as one of the reagent?



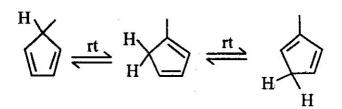
(b) Predict the product with plausible mechanism:  $2 \times 2$ 

(i) 
$$O$$
 $Ph$ 
 $COOEt$ 
 $B_2H_6$ 
 $THF$ 
?

(ii) 
$$\longrightarrow$$
  $\xrightarrow{\text{mCPBA}}$ ?


- (c) What is the difference between a nucleoside and a nucleotide?
- (d) Give an example of conjugated protein.
- 4. (a) Treatment with sodium borohydride converts aldose A into an optically inactive alditol. Ruff degradation of A forms B, whose alditol is optically active. Ruff degradation of B forms D-glyceraldehyde. Identify A and B. 2 + 1
  - (b) What is peptide linkage? Describe the geometry of peptide linkage. 1+2
  - (c) Predict the product(s) of the following reaction: 2+2

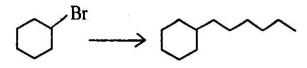
(i) ? 
$$\frac{\text{NaNH}_2}{\text{PhNMe}_2, 170^{\circ}\text{C}}$$
  $\frac{\text{NaNH}_2}{\text{PhNMe}_2, 100^{\circ}\text{C}}$  ?


(ii) 
$$CH_3 CH_3 CHCl_3 NaOH$$
?

5. (a) Identify D→H from the following reaction scheme:

5

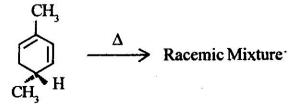



(b) Explain the formation of the following products:



(c) What are the pyrimidine bases which occur in DNA?

1


(d) Apply Corey-House synthesis to carry out the following transformation:



6. (a) Predict the product(s) and account for the chemoselectivity. 2 × 2

(ii) 
$$\frac{1 \text{ Equiv. NaBH}_{4}}{\text{EtOH}} ?$$
(iii) 
$$\frac{\text{H}_{2}, \text{Pd} - \text{C}}{\text{Pd}} ?$$

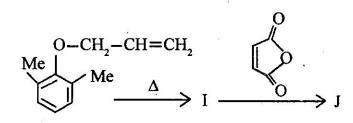
(b) Explain the racemisation of the following compound on heating:



(Continued)

(c) Predict the product/s with plausible mechanism;

$$CH_3CH_2NH_2 + HCOOH(excess) \xrightarrow{\text{Formalin}} ?$$


what is the name of this reaction and the function of formic acid?  $2\frac{1}{2}+1\frac{1}{2}$ 

#### GROUP - A(c)

7. Answer any five questions:

 $2 \times 5$ 

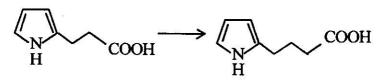
- (a) What is mutarotation? Why sucrose does not exhibit mutarotation?
- (b) Predict the product of the following reaction



(Turn Over)

(c) Explain the formation of the product(s) in the following reaction:

$$\begin{array}{ccc}
OMe & & & \\
ONH & & \frac{POCl_3}{reflux} & ?
\end{array}$$


- (d) What are the principal force factors that maintain secondary and tertiary structures of protein.
- (e) What is coenzyme? Give an example.
- (f) Account for the following observations:

(g) In aqueous solution, D-glucose gives β-D-glucopyranose as major species whereas it produces Methyl α-D-glucopyranoside as major product on treatment with CH<sub>3</sub>OH and HCl. Explain.

- (h) Outline a Strecker synthesis for (D, L)-phenyl alanine.
- (i) What would be the configuration of the product? Use FMO approach;

Trans-3, 4-Dimethyl cyclobutene  $\frac{\Delta}{}$ 

(j) Give a plausible synthetic route for the following transformation:



(Inorganic)

[ Marks: 45 ]

Time: 2 hours

GROUP - B(a)

## Answer any one question:

8. (a) How are electronic spectra of  $d^{1}(oct)$ ,  $d^{9}(tet)$  and  $d^{9}(oct)$  are related for d-d transitions?

- (b) How do Na<sup>+</sup> ions transport across biological membranes? What are the effects of Na<sup>+</sup> in mamalian system?
- (c) Copper(II) acetate monohydrate shows subnormal magnetic moment at room temperature— Explain.
- (d) In the two complex ions, [Co(NH<sub>3</sub>)<sub>5</sub>NCS]<sup>2+</sup> and [Co(CN)<sub>5</sub>SCN]<sup>3-</sup> the site of attachments of NCS<sup>-</sup> and SCN<sup>-</sup> with Co(III) ions are via Sulphur and Nitrogen respectively. Explain.
- (e) Compare the oxygen binding affinity of haemoglobin and Myoglobin.
- (f) Give a flow diagram for extraction of 'Au' from its ore. Write the related chemical reactions. 2+2+2+3+3+3
- 9. (a) "Zinc is the constituent of more than 250 metalloenzymes in biology"- Account on the statement mentioning at least one biochemical process.

- (b) [NiCl<sub>4</sub>]<sup>2-</sup> is paramagnetic while [Ni(CN)<sub>4</sub>]<sup>2-</sup> is diamagnetic, explain using CFT.
- (c) Electronic absorption spectrum of 4f-metal ions consist of sharp lines while those of the 3d-metal ions display broad bands- Explain.
- (d) What is nitrogenase? What is its biological function?
- (e) An octahedral d8 complex showed d-absorption bands at 10739, 17489 and 28217 cm<sup>-1</sup>. Assign the bands from orgel diagram and calculate 10 Dq.
- (f) How the orbital moment is quenched in most of the first transition series complexes? Why the quenching is not perfect in Ni(II), octahedral and Co(II) tetrahedral complexes? 2+2+2+3+3+3

$$2+2+2+3+3+3$$

## GROUP - B(b)

## Answer any two questions:

10. (a) Explain stereochemical non-rigidity with a suitable example.

- (b) In between [Ni(CO)<sub>4</sub>]<sup>2+</sup> and [Ni(CO)<sub>4</sub>], which one is more stable and why?
- (c) Discuss the bonding in Zeise's salt.
- (d) Of the redox couples  $[Co(H_2O)_6]^{3+}/[Co(H_2O)_6]^{2+}$  and  $[Co(NH_3)_6]^{3+}/[Co(NH_3)_6]^{2+}$  which one is more oxidizing and why? 2+3+3+2
- 11. (a) Define heptacity of an organometallic ligand. Indicate the various modes of binding of cyclopentadiene.
  - (b) Which one is better ligand H<sub>2</sub>O or OH<sup>-</sup>? Why?
  - (c) Write down the names of redox enzymes in PS-I and PS-II of photosynthesis.
  - (d) Justify the trend in LMCT energies:

$$CrO_4^{2-} < MoO_4^{2-} < WO_4^{2-}$$

(e) Complete the following reaction sequence with explanation and identify A and B

$$[Pt(NH3)4]2+ \xrightarrow{HCl} A \xrightarrow{HCl} B$$
2+2+2+2+2

- **12.** (a) Give two evidences of metal-ligand orbital overlap.
  - (b) What is Cis-platin? State its use.
  - (c) How does Pt occur in nature? Give a scheme for isolation of pure Pt from principal natural source.
  - (d) Arrange the following complexes in order of increasing lability

$$[K(H_2O)_6]^+, [Al(H_2O)_6]^{3+}, [Fe(H_2O)_6]^{3+}$$
  
2 + 2 + (1 + 4) + 1

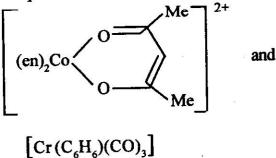
- 13. (a) Except [CoF<sub>6</sub>]<sup>3-</sup> all other octahedral complexes of Co(III) are low spin complexes.— Explain.
  - (b) Draw a polarogram and identify each part. Define diffusion current  $(i_d)$  and half-wave potential  $(E_{1/2})$ .
  - (c) BaDS can behave as a good redox indicator for the titration of Mohr's salt by K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> in presence of H<sub>3</sub>PO<sub>4</sub> Explain.

1

(d) State with equation what happens when an acidic solution of Ti<sup>4+</sup> is treated with dilute solution of H<sub>2</sub>O<sub>2</sub> followed by addition of few drops of NH<sub>4</sub>HF<sub>2</sub> solution. 2+3+2+3

## GROUP - B(c)

## 14. Answer any five questions:


 $2 \times 5$ 

Ł

- (a) Fe(III) can be determined colorimetrically as its thiocyanato complexes but not as its fluoro complex.
- (b) Draw all the optical and geometrical isomers of [Co(en),Cl<sub>2</sub>]<sup>+</sup>
- (c) What do you mean by the statement that temporary hardness of a water sample is 4.5 ppm?
- (d) Room temperature magnetic moment of the complex ion  $[Fe(H_2O)_5NO]^{2+}$  is 3.9 BM. Comment on the oxidation state of 'Fe' in the complex ion.
- (e) What happens when an aqueous solution of  $K_2CrO_4$  is acidified with  $H_2SO_4$  and  $H_2O_2$  is added in cold condition. The resulting

solution is finally shaken with diethyl ether. Give related equations of the above reaction scheme.

- (f) In  $[Cu(H_2O)_6]^{2+}$ , two water molecules undergo exchange with bulk solvent molecules much more rapidly than the other four. Explain.
- (g) What are spinel and inverse spinel?
- (h) Write the IUPAC name of the following compounds:



