2016

CHEMISTRY

[Honours]

PAPER - VI (A+B)

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Use separate books for Group — A and Group — B

GROUP - A

(Organic)

Group -- A(a)

Answer any one question:

 15×1

- 1. (a) Define logical and illogical synthons and lebell the synthons of C-C bond disconnection of glyoxal accordingly.
 - (b) Why double bonds of napthalene remain almost fixed at 1, 2 position? How will you prove it?

(Turn Over)

- (c) Synthesize chloroquinone from metachloro aniline.
 - Z

3

- (d) Prove that all methyl pyranosides of α-D-hexose series have same configuration at C-1 and C-5.
- (e) Predict the products

CHO Alchol A
$$\frac{\text{Cu(OAc)}_2}{\text{NH}_4\text{NO}_3}$$
 B $\frac{\text{Cu(OAc)}_2}{\text{OAlchoholic KOH}}$ C $\frac{(i) \text{Alchoholic KOH}}{(ii) \text{H}_3\text{O}^+}$

- 3
- (f) What happens when alanine is heated with acetic anhydride and pyridine? Give mechanism of reactions.
- 2

2

- 2. (a) Outline the synthesis of phenylalanine using an active methylene compound.
 - (b) Why pyridine-2-carboxylic acid decarboxylate easily? What happens if decarboxylation is carried in presence of acetophenone. 1+

(c) Predict the products of the following with mechanistic explanation (if any): 2+2+2

$$(i) \qquad \text{Br} \\ \frac{\text{KOH/EtOH}}{\Delta}$$

(ii)
$$\sim$$
 OH \sim NaHSO₃/NH₃ Δ

- (iii) Glucose PhNHNH₂ excess.
- (d) Dickmann synthesis for cyclic ketones are less successful for ringsize less than five and above six explain.
- (e) Write structure of a nucleotide.
- (f) Explain formation of different products of the following:

$$[A] \xrightarrow{(i) \text{CH,Li}} [B] \xrightarrow[NH]{(ii) \text{CH,MgI}} [B]$$

UG/III/CHEM/H/VI/16

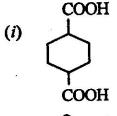
(Turn Over)

Group - A(b)

Answer any two questions:

 10×2

3. (a) Explain following reaction products and indicate major and minor one.


(b) Predit the products using FMO approach

(i)
$$200^{\circ}C$$
 A

(ii) Ph
Ph
Ph
Ph
Ph
 $O + Ph - C \equiv C - Ph \xrightarrow{\Delta} A \xrightarrow{hv} B$
 $2 + 3$

(c) Why thiophene usually does not undergo Diels Alder Reaction? Explain. 1+1 (d) Convert:

4. (a) Give retrosynthetic analysis of the following and synthesise: $2\frac{1}{2}+2\frac{1}{2}$

- (ii)
- (b) Convert:
 - (i) D-glucose \rightarrow L-glucose

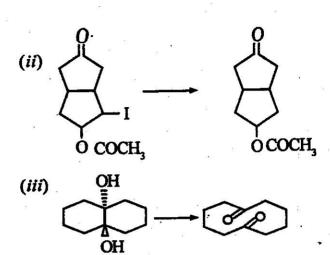
2 + 2

- (ii) Napthalene → Anthracene.
- (c) Define epoenzyme. Give an example.

1

5. (a) Predict the products with mechanism

(i) D-Erythrose $\frac{\text{CH}_2\text{OH}}{\text{NaOMe}}$ [A] $\frac{\text{dil H}_2\text{SO}_4}{\text{NaOMe}}$ [B]


(ii)
$$\frac{\text{PhCOONO}_2}{\text{Me}}$$
 [C]

H

 $\frac{\text{ConH}_2\text{SO}_4 + \text{ConHNO}_3}{0^{\circ}\text{C}}$ [D]

- (b) How will you determine N-terminal amino acid residue of a polypeptide. 2
- (c) How will you protect alchoholic hydroxyl group.
- 6. (a) Write suitable reagents of the following conversions: 1 × 4

$$(i) \underset{\text{Me}}{\longrightarrow} \underset{\text{OH}}{\longrightarrow}$$

$$(iv) \text{ Ph} \longrightarrow D \text{ Ph} \longrightarrow D \text{ Me} \longrightarrow D \text{ H}$$

(b) Write retrosynthesis and synthesise the following: $2\frac{1}{2}+2\frac{1}{2}$

(c) Predict the products of the following:

- 1

PhCHO+PhMgBr \longrightarrow [?] 2:1

Group - A(c)

7. Answer any five questions:

 2×5

- (a) Write factors stabilishing the double helix structure of DNA.
- (b) Why excess diazomethane is used during Erndt Ester synthesis of carboxylic acid.
- (c) Pyridine-N-oxide undergo electrophilic as well as nucleophilic substitution at 2-and 4-positions.
- (d) Give example of a spray reagent for detection of amino acid. Write mechanism of the reaction.
- (e) Write the role of DCC in peptide synthesis with mechanism.
- (f) Why all reducing sugars undergo mutarotation?

()

- (g) Why tributyl tim hydride is not a suitable reagent for reduction of halide attached to chiral centre.
- (h) Prove that napthalene contains two fused benzene rings.
- (i) Predict the product of the following:

$$CH_{2}-Cl \xrightarrow{NaCN} A$$

$$NaCN$$

$$DMSO$$

$$B$$

(j) Write stereochemistry of the product of

GROUP - B

(Inorganic)

Group - B(a)

Answer any one question:

 15×1

		- C	
8.	(a)	Comment on the CO stretching frequencies $(\gamma_{co} cm^{-1})$ in the following compounds	2
		$V(CO)_6^ Cr(CO)_6$ $Mn(CO)_6^+$ 1860 2000 2090	
8	(b)	VO(acac) ₂ has a magnetic moment of 1.7 B.M but V(acac) ₃ is 2.8 B.M. (acac = acetyl acetonate anion) — Explain.	2
	(c)	What is 'Lanthanide Contraction'?	2
¥	(d)	What is the difference between the structures of hemoglobin and myoglobin? Which one can carry oxygen more and why?	3
	(e)	Normally Co ³⁺ is powerful oxidising agent in Co ³⁺ /Co ²⁺ system. However, if excess CN ⁻ is added then Co ²⁺ turns into a powerful reducing agent — Comment.	3
	()	Mn ²⁺ (aq) is faintly coloured whereas aqueous solution of MnO ₄ ⁻ is highly coloured – Explain	

(a)	Although Ni(O) and Zn(II) are isoelectronic, Ni(CO) ₄ exists but [Zn(CO) ₄] ²⁺ does not why?	2
(b)	What are fluxional molecules? Give one example.	2
(c)	Give a flow diagram for the extraction of 'V' from its ore. Write the related chemical reactions.	- 4
(d)	What is the effect of common ion in gravimetric analysis.	2
(e)	Name the metal ion(s) present in the active site of the following biomolecules:	2
	(i) Nitrogenase	
	(ii) Cytochrome-C-oxidase.	
(f)	Starting from (NH ₄) ₂ [PtCl ₄] how will you synthesize <i>cis</i> -and <i>trans</i> -platin.	3
	Group — B(b)	
	Answer any two questions: 10 >	< 2
(a)	Using Orgel diagram, explain the electronic	
	(b) (c) (d) (e)	 (c) Give a flow diagram for the extraction of 'V' from its ore. Write the related chemical reactions. (d) What is the effect of common ion in gravimetric analysis. (e) Name the metal ion(s) present in the active site of the following biomolecules: (i) Nitrogenase (ii) Cytochrome-C-oxidase. (f) Starting from (NH₄)₂[PtCl₄] how will you synthesize cis-and trans-platin. Group - B(b)

(Turn Over)

UG/III/CHEM/H/VI/16

		spectral transitions of $[Ti(H_2O)_6]^{3+}$ ion in weak octahedral field indicating the spectroscopic ground state.	4
	(b)	'An inner metallic ligand is essentially a chelating ligand, but the reverse is not true' — Justify.	2
	(c)	Predict whether CO ₃ O ₄ is normal spinel or inverse spinel.	2
	(d)	Explain the principle of chelation therapy with reference to the removal of arsenic.	2
11.	(a)	The high-spin complex $[Cr(H_2O)_6]^{2+}$ is labile but the low-spin complex $[Cr(CN)_6]^{4-}$ is inert — Explain.	3
	(b)	Cu, Ag and Au have the stable oxidation states +2, +1 and +3 respectively. Give reasons.	2
	(c)	What metal indicator is used for the complexometric estimation of Ca ²⁺ by EDTA titration? Discuss its indicator action.	3

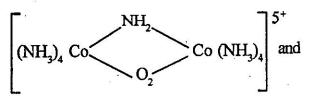
(d)	$[C_0(H_2O)_6]Cl_2$ is pale pink but turns in to deep blue when concentrated HCl is added in excess — Why?	2
12. (a)	Discuss the nature of John-Teller-distortion for an octahedral Cu(II) complex ion.	4
(b)	What is an insertion reaction? Give two examples for this.	3
(c)	KMnO ₄ is an oxidant in both acidic and alkaline medium but K ₂ Cr ₂ O ₇ is an oxidant in acidic medium — Explain.	3
13. (a)	Discuss the active site structure of the enzyme carbonic anhydrase.	2
(b)	Co(II) complex with high spin state shows magnetic moment $4.8 - 5.2$ B.M. in the octahedral field, while in tetrahedral field it is $4.0 - 4.4$ B.M. Explain this observation.	2
(c)	Discuss the basis of Ziegler-Natta polymerization?	2

(d) CO has negligible donor properties toward simple acceptors such as BF₃, but can form strong bonds to transition metal atoms – Explain.

2

(e) What do you mean by masking agent? Give an example.

2


Group -B(c)

14. Answer any five questions:

 2×5

- (a) Cobaltocene is much readily oxidised than Ferrocene Explain.
- (b) How do you determine BOD of potable water? Give reactions.
- (c) Starting from hydrated nickel (II) chloride how will you prepare K₂[Ni(CN)₄]?
- (d) Why prior to titration of Fe²⁺ by standard KMnO₄ solution in HCl medium a small volume of Zimmermann-Reinhardt solution is added?

- (e) Draw the structures of all the possible isomers of the complex ion [Co(en)₂Cl(NO₂)] where en = H₂ N CH₂ CH₂ NH₂.
- (f) Write down the chemical equation involved when H₂O₂ is added to a solution of titanium (IV) sulphate in presence of H₂SO₄.
- (g) Chromium (II) acetate monohydrate is diamagnetic yet it possess d⁴ system Explain.
- (h) Write the IUPAC name of the following compounds:

 $K[PtCl_3(C_2H_4)]$