2016

CHEMISTRY

[Honours]

PAPER - II

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Use separate answer scripts for Group — A & B

[NEW SYLLABUS]

GROUP - A

(Physical)

GROUP - A(a)

Answer any one of the following from Q. Nos. 1 & 2:

 15×1

1. (a) Use the Maxwell distribution of molecular

speed to verify that $\langle v^2 \rangle = 3RT/M$. Use it to find the average kinetic energy. 3 + 1

$$\left[\int_{0}^{\infty} x^{2n} e^{-ax^{2}} dx = \frac{(2n)! \pi^{1/2}}{2^{2n+1} n! \ a^{n+1/2}}\right]$$

- (b) One evaluates (i) the number of collisions per second made by one molecule; (ii) the number of collibions per second per cubic centimeter. The values are Z_1 and Z_2 , respectively, at 25 °C, 1.0 atm. Find the above two quantities of (i) and (ii) in terms of Z_1 and Z_2 , respectively when the gas pressure is 1.0×10^{-3} atm, at 25 °C.
- (c) For the gas-phase reaction $2HI \rightarrow H_2 + I_2$, values of K (rate constant) are $1 \cdot 2 \times 10^{-3}$ and $3 \cdot 0 \times 10^{-5}$ dm³ mol⁻¹s⁻¹ at 700 K and 629 K, respectively. Estimate E_a and A. Can you predict the order of the reaction?
- (d) Explain with proper diagram the zeta potential. Mention how does it differ from thermodynamic potential.

4

3

2. (a) Give the SI units of each of the following properties and state whether each is extensive or intensive:

(i)
$$\left(\frac{\partial v}{\partial T}\right)_P$$

(ii)
$$V^{-1} \left(\frac{\partial v}{\partial T} \right)_P$$

(iii)
$$\left(\frac{\partial u}{\partial v}\right)_T$$

- (b) A perfect gas with $\overline{C}_{\nu} = 3R$ independent of T expands adiabattically into a vacuum, thereby doubling its volume. Student-A uses $TV^{\tau-1} = C$ to find $T_2 = T_1/2^{1/3}$ and student-B finds $T_2 = T_1$. Who is correct? Justify your answer.
- (c) Establish the equation that is the basis for capillary-rise method. Explain how the method allows calculation of surface tension (γ).

A

(d) Show that the viscosity coefficient of gas is independent of pressure. You may use the relevant expressions from simple kinetic molecular theory of gases. Also give a physical explanation of your argument.

GROUP - A(b)

Answer any two of the following questions: 10×2

- 3. (a) One mole of an ideal gas expand isothermally and reversibly from 90 to 300 L at 300 K.
 - (i) Calculate ΔU , ΔS , W, and q for this system.
 - (ii) If the expansion is carried out irreversibly by allowing the gas to expand into an evaluated container, what are the values of ΔU , ΔS , W, and q? 3+3
 - (b) (i) Mention the probable source for origin of charge on colloidal particles.
 - (ii) Explain with example the Schulze-Hardy rule. 2+2

- 4. (a) Depict the variation of S with T graphically, at a constant pressure when a solid (at a temperature T_i) is converted to vapour at a temperature $T_f(T_f > T_b, T_b)$ being the boiling point of the liquid). Explain the variation with the appropriate equation.
 - (b) For an ionic reaction, A⁻+B⁺→C, the rate constant changes with the progress of the reaction. Justify or criticize.
 - (c) For a first order gaseous reaction $2A(g) \rightarrow B(g) + C(g) + D(g)$, find the rate expression in terms of the initial presure (p_0) and the presure at time $t(p_l)$.
- (a) State the Langmuir adsorption isotherm and indicate the term 'adsorption coefficient (K)'. Explain that: A plot of P/V vs. P would give a straight line with slope/intercept = K.
 - (b) For the mechanism

$$A+B\rightarrow C$$

 $2C\rightarrow F$
 $F+B\rightarrow 2A+G$

- (i) Give the stoichiometric number of each step and give the overall reaction,
- (ii) Classify each species as reactant, product, intermediate, or catalyst.
- (c) What is standard heat of reaction (ΔH°)?
 Establish a suitable equation that gives the temperature dependence of ΔH°.
 3
- **6.** (a) Consider a zeroth order reaction $A \rightarrow P: 1\frac{1}{2} \times 4$
 - (i) Give the differential and integrated rate law,
 - (ii) Give a suitable plot of a straight line to evaluate the rate constant,
 - (iii) Obtain the expression for $t_{1/2}$,
 - (iv) Can it be a single step reaction?
 - (b) Define and mention the thermodynamic expression: Joul coefficient (μ_J) , Joule—Thomson coefficient (μ_{J-T}) . Find their values for a gas obeying $P(\bar{v}-b) = RT$. 2+2

3

GROUP - A(c)

7. Answer any five questions:

 2×5

- (a) Give reasons:
 - (i) van der Waals constant (a & b) can be expressed using any two quantities of P_C, \overline{V}_C and T_C .
 - (ii) We prefer the pair (P_C, T_C) rather than $(T_C, \overline{V_C})$ for finding a & b.
- (b) Justify that 1 CGS unit = 0·1 SI unit for viscosity coefficient.
- (c) Does the term "reversible" have the same meaning in kinetics as in thermodynamics?
- (d) du < 0 is a thermodynamic criterion for spontancity at constant volume and constant entropy condition. On the other hand entropy increases in a spotaneous change. How would you sort out the apparent contradiction of the statements?

- (e) Write down the pair of thermodynamic equations of state. Why are they so called?
 - (f) What are (i) CMC (ii) Gold number?
 - (g) For the reaction $2A + B \rightarrow P$, which statement is true? Give reason.

(i)
$$\frac{dn_A}{dt} = 2\frac{dn_B}{dt}$$

$$(ii) \ 2\frac{dn_A}{dt} = \frac{dn_B}{dt}$$

(Symbols have their usual significances)

(h) State and explain the terms therein:

Gibbs adsorption isotherm.

Explain surface excess.

GROUP - B

(Industrial)

GROUP - B (a)

Answer any one question:

 15×1

8,	` '	What is GLC? Discuss one application of	
		GLC for separation and identification of the	
		components in a mixture.	1 + 4

- (b) What are the products of high temperature carbonisation? How are they separated? Give their uses. 2+3+2
- (c) Differentiate between ultimate analysis and proximate analysis of coal.
- 9. (a) Discuss the method of recovery of glycobine from spent lye.
 - (b) Describe briefly a process for deionisation
 of water. Mention the causes of hardness
 of water.
 - (c) Write down the composition of common soda glass.
 - (d) State the purpose of annealing of glass. What is borosilicate glass? 2+1

GROUP - B (b)

Answer any	two questions:	10×2

- 10. (a) Describe briefly the process of hydrogenation of vegetable oils. Why is an oil hydrogenated? Give uses of hydrogenated?Give uses of hydrogenated oils. 4+2+1
 - (b) What are typical advantages of a ceramic product? Give one use of solid fuel. 2+1
- 11. (a) Given definition of a pigment and name some common pigments used in making paints. 2 + 2
 - (b) Why methyl orange is used as an indicator but not as dye?
 - (c) Discuss the manufactured of DDT with a flow diagram.
- 12. (a) What do you understand by high polymer?
 What structural differences distinguish the thermosetting polymer from thermoplastic polymer.

 1+3

(b)	Discuss briefly how nylon 66 is prepared in laboratory?	3
(c)	Write down the chemical structure of repeat unit for the following polymers:	3
	(i) Neoprene	
	(ii) PVC	8
	(iii) Buna-S	
13. (a)	What do you mean by NPK fertilizer? Discuss the manufacturing of urea from ammonia with flow chart. 1 +	- 3
(b)	What is triple superphosphate? Give one example of straight fertilizer and complex fertilizer respectively.	- 2
(c)	Why hardness of water is exprressed in terms of CaCO ₃ equivalent?	2
	GROUP - B(c)	
14. An	swer any five questions: 2 >	< 5

(a) What do mean by accuracy and precision?

- (b) What is high alumina cement?
- (c) Define cullet.
- (d) What are the advantages and disadvantages of using DDT as pesticide?
- (e) Define saponification value of oils.
- (f) Write down the composition and heating value of coal gas and producer gas.
- (g) Name important constituents of petroleum.
- (h) Distinguish between oil and fat.
- (i) What are drying oils? Give one example.