2017

M.Sc.

1st Semester Examination

ELECTRONICS

PAPER-ELC-103

Subject Code-27

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Electronic Materials)

Answer Q. No. 1 and any three from the rest.

- 1. (a) What is Burgers vector?
 - (b) What do you understand by "free electron gas"?
 - (c) Explain dielectric relaxation.

- (d) Draw a critical T-H-I diagram for super-conductors and explain.
- (e) Why territes are superior to ferromagnetic materials? 5×2
- 2. (a) What is meant by crystal imperfections? Classify them in order of geometry.
 - (b) Derive an expression for density of Schottky defects in ionic crystals. (2+3)+5
- 3. (a) Derive an expression for the density of states and hence show that at 0 K, the average energy of electron is $\frac{3}{5}$ th the Fermi energy.
 - (b) Determine the internal energy of the electron gas per unit volume at 0K for metallic silver containing one free electron per atom.
 - The density and atomic weight of silver is 10.5 g cm^{-3} and 108 respectively. (3+4)+3

- 4. (a) Find an expression for electronic polarization of a gas atom of radius R. Does the electronic polarization vary with temperature?
 - (b) Silicon has the dielectric constant 12, and the edge-length of the conventional cubic cell of silicon lattice is 5.43 \mathring{A} . Calculate the electonic polarizability of silicon atoms.
 - (c) What is the physical significance of complex dielectric constant? (4+1)+3+2
- 5. (a) Describe the structure of ferrites. How is the magnetic moment of ferrite molecule calculated?
 - (b) Derive the magnon dispersion relation for a spin S on a simple cubic lattice. (3+3)+4
- 6. (a) Distinguish between type-I and type-II super-conductors. Name some materials belonging to these two types of superconductors.
 - (b) Show that in an ac Josephson effect current oscillates with frequency

 $\omega = \frac{2eV}{\hbar}$, where the symbols have their usual meanings.

What is an inverse ac Josephson effect?
(2+1+1)+(4+2)

[Internal Assessment — 10 Marks]