2017

M.Sc. 4th Semester Examination

PHYSICS

PAPER-PHS-404

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Solid State Special)

Answer Q. No. 1 and any three from the rest.

1. Answer any five questions:

2x5

- (a) Prove that superconduting state is more ordered state than normal state at $T < T_c$.
- (b) Explain what is meant by single particle tunneling?
- (c) Prove that the Meissner effect is consistent with disappearence of resistivity in a superconductor.
- (d) Find the spectroscopic notation and effective number of Bhor magneton for Cr²⁺ having 3d⁴ electrons in the outermost orbit.

- (e) Show the schematic spin arrangement in Ferrous Ferrite. Why it is a technically important solid.
- (f) Show one application of NMR and one application of ESR.
- (g) What is Bloch $T^{\frac{3}{2}}$ law.
- (a) Device an expression of Exchange integral on the basis of Heitler London Scheme applied for a ferromagnetic solid.
 - (b) Explain why Fe is Forromagnet while Mn is non-ferromagnet. 8+2
- 3. (a) Express Molecular Field Theory approximation in case of Antiferromagnetism.
 - (b) Find an expression of susecplibility of antiferromagnetic solid in the temperature range when the sublattices are far away from being magnetically saturate?
 - (c) Find an expression of Neel temperature. 2+5+3
- 4. (a) Explain the principle of NMR and hence find a frequency of precessional motion.
 - (b) Explain what is meant by Spin-Lattice relaxation and hence find an expression of total rate of change of magnetisation?

 5+5

- 5. (a) Explain what is meant by coherence length.
 - (b) Find an expression of coherence length.
 - (c) Explain what is the origin of positive surface energy in a superconductor. 1+6+3
- **6.** (a) Derive the condition under which electron-electron interaction in a superconductor becomes attractive.
 - (b) What is the origin of energy gap in a superconductor.
- 7. (a) Find the expression of effective number of Bohr magneton for a paramagnetic solid assuming wide multiplets.
 - (b) Find the expression of penetration of magnetic field due to different causes when AC field is applied to a superconductor. 5+5

(Electrnics Special: Analog)

Group-A

[Marks : 20]

Answer Q. No. 1 and any one from the rest.

1. Attempt any five questions:

 2×5

(a) Which mode of propagation is not possible in a waveguide and why?

- (b) Write the advantages of digital voltimeter over analog one.
- (c) Write the advantages of P/L colour picture tube over Delta gun colour picture tube.
- (d) Why negative modulation is used in picture signal modulation?
- (e) Calculate the picture carrier and sound carrier frequency used for channel 7 in CCIR-system B type transmission.
- (f) How horizontal and vertical sync pulses are separated from the composite video signal?
- (g) What do you mean by colour difference signal? Which colour difference signals are transmitted in colour TV system?
- (a) Explain the construction details and operation of a P/L colour picture tube with necessary diagrams.
 - (b) Explain the operation of a staircase ramp type digital voltmeter with necessary block diagram and state its advantages over simple ramp type digital voltmeter. 5
- (a) Write a short note on the development of vertical blanking and sync pulses in CCIR system-B TV transmission standard.
 - (b) Draw the block diagram of a B-W TV receiver and explain its operation.

(Electrnics Special: Digital)

Group-B

[Marks : 20]

Answer Q. No. 1 and any one from the rest.

1. Answer any five questions:

5×2

- (a) Explain address and data multiplexing in 8076 μ P.
- (b) A bandpass signal has a central frequency f_0 and extends from $f_0 + 5$ to $f_0 5$ kHz. The signal is sampled at a rate $f_3 = 25$ kHz. As the central frequency f0 varies $f_0 = 5$ to 50 kHz find the ranges of f_0 for which the sampling rate is adequate.
- (c) What do you mean by PWM & PPM?
- (d) If a memory location starts with 0000 and ends with FFFF then how many locations are there? If the word length is 8 then how many flip-flops are there in that memory cell?
- (e) State the basic difference between $8085 \,\mu\text{P}$ and $8086 \,\mu\text{P}$.
- (f) If a PCM system is changed from 4 bit to 8 bit then what will be the change in quantum state and signal to noise ratio?
- (g) What is comparator in digital communication technique?

- 2. (a) What do you mean by "Bus Interface Unit" and "Execution Unit" of 8086 μ P? What is the advantage of having these two separate unit?
 - (b) Write a program to move an array of 100 numbers from 3000 onwards to 4000 onwards memory location in $8085 \mu P$.
 - (c) Draw the waveform of the following outputs:

- (a) Give the block diagram of FSK receiver unit and show the generation of signal.
 - (b) Derive the quantization error in PCM system. How it can be minimized?
 - (c) Briefly state the differential pulse code modulation technique. 3+4+3