2017

M.Sc.

1st Semester Examination

PHYSICS

PAPER-PHS-102

Subject Code-33

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Use separate Answer-scripts for Group-A and Group-B

(Quantum Mechanics-I)

Group-A

Answer Q. No. 1 and any one from the rest.

1. Answer any five bits:

5×2

(a) If $E^2 = p^2c^2 + m^2c^4$, then prove that $v_pv_g = c^2$ where v_p and v_q are phase and group velocity respectively.

- (b) Show that $\left(\frac{d}{dx}\right)^t = -\frac{d}{dx}$.
- (c) If $\hat{A} = \alpha \hat{x} + i\beta \hat{p}$; α , β are real number. Find $[\hat{A}, \hat{x}]$ and $[\hat{A}, \hat{p}]$
- (d) A real operator \hat{A} satisfies the lowest order equation $\hat{A}^2 4\hat{A} + 3 = 0 \text{ show that } \hat{A} \text{ is an observable.}$
- (e) For a system of fermions, the creation operator (a_k^+) and annihilation operator (a_k) obey $\{a_k, a_k^+\} = \delta_{kl}$. Show that the eigen values of the number operator N_k defined by $n_k = a_k^+ a_k$ are 0 and 1.
- (f) Write down the expression of probability current density for a charge particle in terms of vector potential \overrightarrow{A} .
- (g) A particle of mass m moves in a spherically symmetric potential V = kr, where k is a positive constant. Find the ground state energy.

(h) Show that, if the Hamiltonian H of a system does not depend explicity on time. The ket $|\psi(t)\rangle$ varies with time according to

$$|\psi(t)\rangle = \exp\left(-\frac{iHt}{\hbar}\right)|\psi(0)\rangle$$

2. (a) Taking the gr. state eigen function $\psi(r) = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a}$. Show that for an electron in the ground state of the hydrogen atom the momentum probability distribution is given by

$$\frac{8}{\pi^{2}} \frac{(\hbar/a_{0})^{5}}{\left[p^{2} + \left(\frac{\hbar}{a_{0}}\right)^{2}\right]^{4}}$$

(b) Show that (i) the most probable magnitude of the momentum of the electron is $\frac{\hbar}{\sqrt{3}a_0}$. (ii) its mean value is $\frac{8\hbar}{3\pi a_0}$, where a_0 is the Bhor radius.

3. (a) At t = 0, particle in a harmonic oscillator potential

$$\psi(x,0) = \frac{1}{\sqrt{2}} [\psi_0(x) + \psi_1(x)]$$
. Where $\psi_1(x)$ are real orthonor-

mal eigen functions for the ground and first excited states of the oscillator. Show that probability density $|\psi(x,t)|^2$ oscillates with angular frequency w.

- (b) Find the number of bound states for a particle of mass 2200 electron mass in a square well potential of depth 70 Mey and radius 1.42 fm.
- (c) A particle of mass m is trapped in a hollow sphere of radius R with impenetrable walls. Obtain an expression for the force exerted on the walls of the sphere by the particle in the ground state.
 5+2+3

Group-B

Answer Q. No. 1 and 2, and any one from the rest.

1. Answer any two bits:

2×2

(a) Show that five fold rotational symmetry is absent in Bravis lattice.

- (b) Explain what is meant by Miller-Bravis indices?
- (c) Show the stereogram and matrix representation for point group 222.
- 2. Answer any two bits:

 2×3

- (a) Find the structure factor of diamond and find the condition of allowed reflection.
- (b) Clearly explain what is meant by single crystal and polycrystalline material. How they can be distinguihed experimentally?

 1½+1½
- (c) Find an expression of effective mass in a solid? What is meant by negative effective mass? 2+1
- 3. (a) Derive Laue equation assuming x-ray falling on a crystal.
 - (b) What is a Brillonin zone?

8+2

- 4. (a) Derive density of states for one dimensional monatomic chain of vilerating atoms. What is Van Hove singularity?
 - (b) Explain what is the physical origin of energy gap in a solid?

(c) What is optical branch and why it is so called.

4+1+31/2+11/2