2017

M.Sc. 4th Semester Examination APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-401

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Functional Analysis)

Answer Q. No. 1 and any four from Q. No. 2 to Q. No. 6.

Notations and Symbols have their usual meanings.

1. Answer any four questions:

4×2

(a) Let X, Y and Z be Banach space over the same field of scalers and G, $G_n \in BL(Z, X)$. Let $F_n(x) \to F(x)$, $x \in X$ and $G_n(z) \to G(z)$, $z \in Z$. Show that $(F_nG_n)(z) \to (FG)(z)$, $z \in Z$.

- (b) Let M : $l^1 \rightarrow l^1$ be a linear map defined by
 - $\text{(Mx) } (i) = \sum_{i=1}^{\infty} k_{ij} x(j) \text{ where } x = (x(1), \ x(2), \ \ldots) \in \mathit{l}^{1}. \text{ Suppose } \sup \left\{ \sum_{i=1}^{\infty} \left| k_{ij} \right| : j \in \mathbb{N} \right\} < +\infty \text{ . Show that M is bounded.}$
- (c) Let H being a Hilbert space and $T \in BL(H)$ be a normal operator such that $T(x) = \alpha x$ for some $x \in H$. Then show that $T \cdot x = \alpha x$.
- (d) Let (X, II II) is a Banach space and Y is a closed subspace of X then show that Y is a Banach space.
- (e) In Euclidean 2-space \mathbb{R}^2 describe geometrically the open ball centred at (0, 0) with radius 1 with respect to the norm $\|(\mathbf{x}_1, \mathbf{x}_2)\| = |\mathbf{x}_1| + |\mathbf{x}_2|$.
- (f) If T is a self-adjoint operator over a Hilbert space H, show that for every natural number n, Tⁿ is self adjoint.
- 2. (a) Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms in the NLS Euclidean 2-space \mathbb{R}^2 defined by $\|\cdot\|_1$ (\mathbf{x}_1 , \mathbf{x}_2) $\|\cdot\|_1 = \sqrt{\mathbf{x}_1^2 + \mathbf{x}_2^2}$ and $\|\cdot\|_1$ (\mathbf{x}_1 , \mathbf{x}_2) $\|\cdot\|_2 = \max(|\mathbf{x}_1|, |\mathbf{x}_2|)$. Show that two norms are equivalent.

- (b) Let X and Y ≠ {0} be normed spaces with the same scalar field where dim X = ∞. Show that there is at least one unbounded linear operator T: X → Y.
- (a) Show that dual of a normed linear space is always complete.
 - (b) Show that a Banach space cannot have a countably infinite basis.

 4+4
- 4. (a) Prove that every linear operator over a finite dimensional NLS is bounded.
 - (b) For every $x \in X$ prove that $||x|| = \sup_{f \in X^*} \frac{|f(x)|}{\|f\|}$, where X is a NLS and X^* be the dual space of X.
- 5. (a) What do you mean by a best approximation to a point x ∈ X out of a subspace Y of X? (X is given as an inner product space). Let F be a subspace of an inner product space X and x ∈ X. Then show that y ∈ F is a best approximation to x if and only if (x y) ⊥ F. Also, show that dist (x, F) = ⟨x, x y⟩^{1/2}.
 - (b) Let $E \subset X$ be closed under scalar multiplication and $x \in X$. Then $x \perp E$ if and only if dist (x, E) = ||x||.

(1+3)+4

- 6. (a) Define a self-adjoint operator and a normal operator. Give an example to show that normal operator may not be a self-adjoint operator.
 - (b) Let $A \in BL(H)$ be self-adjoint where H is a Hilbert space. Then show that $||A|| = \sup \{ |\langle Ax, x \rangle| : ||x|| \le 1, x \in H \}$.
 - (c) Let A ∈ BL(H), where H is a Hilbert space. Then prove that,

$$A > 0 \Leftrightarrow A \ge 0$$
 and $Ker(A) = \{0\}$

$$\Leftrightarrow A \ge 0$$
 and $\overline{Ran(A)} = H$, where Ran(A) is the range of A.

2+3+3

[Internal Assesment: 10 Marks]