2017

M.Sc. 2nd Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-205

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(General Theory of Continuum Mechanics)

Answer Q. No. 1 and any four from the rest.

1. Answer any two questions:

4×2

(a) The state of stress throughout a continuum is given with respect to the cartesian axes ox₁x₂x₃ by

$$(T_{ij}) = \begin{pmatrix} 3x_1x_2 & 5x_2^2 & 0 \\ 5x_2^2 & 0 & 2x_3 \\ 0 & 2x_3 & 0 \end{pmatrix}.$$
 Determine the stress vector

acting at the point $P(2, 1, \sqrt{3})$ of the plane that is tangent to the cylindrical surface $x_2^2 + x_3^2 = 4$ at P.

4

(b) Show that in two dimensional irrotational fluid motion, stream function $\psi(x, y)$ and velocity potential $\phi(x, y)$ satisfy the Laplace's equation and also show that the family of curves $\phi(x, y) = constant$ and $\psi(x, y) = constant$ cut orthogonally at their point of intersection.

4

(c) Prove that the pressure at a point in a perfect fluid has the same magnitude in every direction.

4

2. Show that the velocity potential given by

$$\frac{1}{2}\log \left[\frac{(x+a)^2+y^2}{(x-a)^2+y^2}\right]$$
 gives a possible motion of a liquid in

two-dimensional motion. Also determine the form of stream lines and the curves of equal speed. 3+3+2

- 3. (a) What is the current function in two-dimensional incompressible fluid motion?
 - (b) State and prove Kelvin's Minimum Energy Theorem.

4. (a) Derive the integral of Euler's Equation of motion when body forces are conservative, pressure is a function of density only and flow is irrotational.
5

(b) Show that $\frac{x^2}{a^2} \tan^2 t + \frac{y^2}{b^2} \cot^2 t = 1$ is a possible form of boundary surface of a liquid motion.

5. (a) What is the concept of the principal stress and the principal direction of stress?

(b) The stress tensor at P is given by $(T_{ij}) = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$.

Determine the principal stresses and principal directions of stress.

6

- 6. (a) Explain the geometric interpretation of infinitesimal strain tensors.
 - (b) Find the relation between α and β such that the small deformation defined by $u_1 = \alpha x_1 + 3x_2$, $u_2 = x_1 \beta x_2$ and $u_3 = 3x_3$ is isochoric.

[Internal Assessment —10]