2017

M.Sc. 2nd Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-204

Full Marks: 50

Time: 2 Hours.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Discrete Mathematics)

1. Answer any five questions:

5×2

- (a) Find the maximum number of vertices of a binary tree of depth h.
- (b) What do you mean by "complexity of an algorithm"...
- (c) Explain Tautology and Contradiction with suitable examples.

- (d) Define Phrase-Structure Grammar.
- (e) Show that the relation "≥" is a partial order on the set of integers, Z.
- (f) State the converse, inverse and contrapositive of the statement "If n is odd, then n + 1 is even".
- (g) Give an example of a Hamiltonian graph which is not Eulerian graph with proper justifications.
- (h) Define the following terms;(i) "Ecentricity of a vertex" (ii) "Rooted tree".

2. Answer any five questions:

5×4

- (a) Define inference rules. Show that ~r is a valid conclusion from the given p v ~q, ~q → r, q; when p, q and r are given statements.
- (b) Illustrate the steps for determine the minimal spanning tree of the following graph:

- (c) Prove that the following proposition is a tantology (without establishing a truth table)
 [(p ∨ q) ∧ (p → r) ∧ (q → r)] → r, where, p, q and r are given statements.
- (d) Express the Boolean function $f(x, y, z) = (x + y) \cdot (x + z) + y + z'$ in its disjunctive normal form.
- (e) Show that any connected graph with n vertices and (n-1) edges is a tree.
- (f) Analyze the time complexity of a Binary search algorithm. What are the conditions under which sequential search of a given list is preferred over binary search?
- (g) How many positive integers between 1 to 1000 which are
 - (i) not divisible by either 3 or 4?
 - (ii) divisible by 3 but not by 4?
- (h) Define lattice. Test whether the partial order set represented by the following Hasse-diagram is a lattice.

3. Answer any two questions:

 2×5

- (a) State and prove the Euler formula for a planar graph.
- (b) Use the generating function to solve the following recurrence relation

$$a_{n+1} - 2a_{n+1} + a_n = 2^h$$
, $a_0 = 2$, $a_1 = 1$.

(c) State the strong induction principle. Show that $3^{2n+1} + 2^{n-1}$ is divisible by 7.

[Internal Assessment -10]