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Candidates are required to give their answers in their
own words as far as practicable.

Nlustrate the answers wherever necessary.
{ Complex Analysis )

Anéwer,Q. No. 1 and any four from the rest.

1. Answer any four questions : 4x2

@ If Az is analytic, then show  that
f i

; ; ¢ i )
fz)=(cos8 -1 sint})=—, where z=re
. ar

(b) Find the branch cut of Logiz + 21).
. Y,

{Turn Over)



{c) Is it possible to evaluate the integral | f(z}dz, where
) C
fl2)=(52+2)/i2lz -2}l and C:jeg|=1, using the single
1 13
residue of — f| —{at z=07? Justify.
2?7 \z
{d) State the Laurents’ theorem.

{e] A linear transformation with two distinct fixed points «

and § can be put in a form ¥7% - ;27 % where k is
w-f . z-p
constant. Under what value/s of k, the above

transformation is elliptic, hyperbolic and loxodromic ? .

{f) Let C be any simple closed contour, described in the
positive sense at the z-plane and °let
glw)=| 5—?+—2§—dz Then find g(w), when wis inside C.

clz-w) ‘
2. {al Without evaluating the integration, find an upper bound
of the integral

{ 500
e'22 _ JS E l . i
J 5 }dz , where C is the arc of the circle | zl =3
ol z2+2
fromz=—3 to z=-i3 , laking in anti-clockwise
direction.
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(b) Construct a complex function which is continuous

everywhere but nowhere analytic. Justify your answer.
6+2

3. (a) Using an antiderivative, evaluate the integral

1+iv3 (5= e
1_iﬁ(~;+312 )dz

by taking any path of integration in region Y < J3x taken

from z = -1-+3ito z=1++/3i, except for its end points.

{Use principal branches of the required functions.j

(b) Find the order of the pole of the function
f(z)=.__..i_~._-at g L, 5+3
4 .

cosSzZ - Sinz
4. (a} Let f(z)=(x3 +2)+i[1—y)2. Find all the points in the
complex plane where f(z) is differentiable and then
compute f'(z) at those points. Is f(z} analytic at any

point in the complex plane ? Justify.

{b) Find Taylor or Laurent series expansion of the function
3

flz)=——

z{z - 1)

convergence is 1 < lz 4 f| <2. 4+4

with centre at ¢ = -i, where the region of
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5. (a) Clirgsify the singularity at z = 0 if the function

cosl1(23 }-1

flzy= =

in terms of removal singularity, pole

and essential singularity. .

3

(b) Evaluate I ________dcosh(z )-1 2z, where C:|z[=1 taken in the
C 2

positive direction. _ 4+4

6. {(a} State and prove the Cauchy’s theorem.

{b) Find a conformal map of the unit disk |zt <1 onto the

right half-plane Refw) > Q. 4+4
7. (a) Using the method of residues, evaluate [:Sin £ d%.
' 0 x
(b) State the Jordan's Lemma. 543

{ Internal Assessment : 10 Marks J
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