2017

M.Sc. 4th Semester Examination APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-404 (OR/OM)

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Non-linear Optimization / Dynamical Oceanology-II)

MTM-404 (OR)

(Non-linear Optimization)

Answer Q. No. 1 and any three from the rest.

1. Answer any five from the following:

5×2

(a) Define Nash equilibrium solution and Nash equilibrium outcome in pure strategy for bimatrix game.

- (b) What is stochastic programming problem? Who first defined chance constrained programming technique and in which year?
- (c) State Slater's constrait qualification.
- (d) Write the advantages and disadvantages of geometric , programming.
- (e) What is degree of difficulty? Define various types of degree of difficulty.
- (f) Define multi-objective non-linear programming problem with an example.
- (g) What are the differences between Beale's method and Wolfe's method for solving quadratic programming problem.
- 2. (a) Solve the following quadralic programming problem using Beale's method

Maximize
$$z = 10x_1 + 25x_2 - 10x_1^2 - x_2^2 - 4x_1x_2$$

subject to $x_1 + 2x_2 \le 10$,
 $x_1 + x_2 \le 9$,
 $x_1, x_2 \ge 0$

7

- (b) Define the following:
 - (i) the (primal) minimization problem (MP)
 - (ii) the dual (maximization) problem (DP).
- 3. (a) State and prove Fritz-John saddle point sufficient optimality theorem. What are the basic differences between the necessary criteria and sufficient criteria of Fritz-John saddle point problem.
 - (b) State Farkas' theorem. Give the geometrical interpretation of it.
- (a) Describe the solution procedure of an unconstraied geometric programming problem (problem to be contidered by you).
 - (b) Prove that all strategically equivalent bimatrix games have the same Nash equilibria.
- 5. (a) Use the chance constrained programming technique to find an equivalent deterministic form of stochastic programming problem :

3

$$Minimize f(x) = \sum_{j=1}^{n} c_j x_j$$

$$P\left[\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i}\right] \ge p_{i}, i = 1, 2, ..., m$$

and $x_j \ge 0$, j = 1, 2, ..., nwhere a_{ij} is normally distributed random variable. 6

- (b) Prove that if (\bar{x}, \bar{u}) is a solution of KTP then is a solution of MP, where $\bar{x} \in x^0$. Given x^0 is open in \mathbb{R}^n and Q and g are differentiable and convex at \bar{x} . Hence prove that if $(\bar{x}, \bar{r}_0, \bar{r})$ is a solution of FJP and $\bar{r}_0 > 0$, then \bar{x} is a solution of MP.
- (a) Let Q be a numerical differentiable function on an open convex set Γ ⊂ Rⁿ. Prove that Q is Γ convex on Γ if and only if Q(x²) Q(x¹) ≥ ∇ Q(x¹) (x² x¹) for each x¹, x² ∈ Γ.

(b) Define constraint qualifications and explain the cause of their introduction in the theory of non-linear programming problem.

[Internal Assesment: 10 Marks]

MTM-404 (OM)

(Dynamical Oceanology-II)

Answer Q. No. 1 and any four from the rest.

- 1. Answer any four questions out of six questions: 4×2
 - (a) Write the depth-averaged 2D shallow water equations and then derive the vorticity equation.
 - (b) Write the y-momentum equation in isobaric coordinate system and also write the physical interpretation of each terms.
 - (c) State the Taylor-Proudman theorem.

- (d) Show the position of three cells of general circulation in the globe.
- (e) Write the kinematic and dynamic boundary conditions at the surfaces of the shallow water.
- (f) Calculate the Rossby radius of deformation for a deep ocean with height = 4000m and a shallow ocean with height = 100m.
- 2. (a) Calculate the circulation within a small fluid element with area $\delta x \delta y$.
 - (b) Consider an arbitrary large fluid element, and divide it into small squares. Then calculate the circulation within the area.
 - (c) Using this formula, find the circulation of the linear shear flow.

 3+3+2
- (a) Summarize equations for Quasi-Geostrophic approximations in terms of geostropic and ageostropic components of the velocity.
 - (b) Discuss the sequence at which the solution of above equations can be done. 5+3

- 4. (a) Write the thermodynamic equation in rectangular coordinate system and then convert it to its isobaric coordinate system. What is the physical interpretation of each term?
 - (b) Finally reduce the above equation in terms of static stability parameter.
 6+2
- 5. (a) Sketch the configuration of inviscid shallow water rotating about the z-axis with constant angular velocity $\Omega \sin \varphi$, where the symbols have their usual meaning.
 - (b) Stating the basic assumptions in shallow water theory, derive only the equation for the surface elevation.

2+6

- 6. (a) Stating the basic assumptions for Kelvin waves at a straight coast, write the governing equations.
 - (b) Find the solution of the above equations for the surface elevation and the velocity distribution. 3+5
- (a) Stating the basic assumptions for linear waves with rotation, write the governing equations.
 - (b) Derive the Klein-Gordon equation.

(c) Assuming the necessary assumptions, find the stationary solution for the case with initial surface elevation as

$$\delta_0 = \begin{cases} \frac{h}{z} & \text{for } x > 0 \\ -\frac{h}{2} & \text{for } x < 0 \end{cases}.$$

Also sketch the solution.

2+3+3

[Internal Assesment: 10 Marks]