#### 2017

# M.Sc. 4th Semester Examination CHEMISTRY

PAPER-CEM-401

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

#### (Physical Special)

Answer any five questions, taking two questions from each group.

#### Group-A

1. (a) Imagine a system in which there are just two linearly independent kets.

$$|1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
,  $|2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 

Hamiltonian matrix of the system has the following form,

$$H = \begin{pmatrix} h & g \\ g & h \end{pmatrix}$$

Where g and h are real constant. If the system starts out at t = 0 in state  $|1\rangle$ , then find out the state at time, 't'.

(b) Find the eigen values and eigen vectors for

$$A = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$$

5+3

2. Obtain the matrix representation of the following angular momentum operator when J = 1.

$$J_+$$
,  $J_-$ ,  $J_x$  and  $J_y$  2×4

3. Deduce the pure spin states and indicate their spin multiplicities for a system of three non-equivalent electron.

with  $M_s = \frac{1}{2}$ .

4. Write down the steps involved for the determination of molecular term symbols. Deduce the possible term symbols for O<sub>2</sub> and hence obtain its ground state terms. Write the ground state wavefunctions,

$$\left(\Psi = \Psi_{\text{spatial}} \cdot \Psi_{\text{spin}}\right) \text{ of } O_2$$
 2+4+2

#### Group-B

- 5. (a) State and Proof Koopman's theorem to obtain the energy of atomic orbital.
  - (b) Use j-j coupling scheme to obtain the terms for d<sup>2</sup> configuration.

    4+4

- 6. Deduce Hartree-FOCK-Roothaan equation. How do you obtain energy of HF orbital using this equation?
- Write down the spin-orbit interaction Hamiltonian for L-S coupling scheme. Obtain the expression of spin-orbit interaction energy (E<sub>50</sub>).
   Calculate the spin-orbit interaction energy of <sup>3</sup>F<sub>2</sub>, <sup>3</sup>F<sub>3</sub> and <sup>3</sup>F<sub>4</sub> levels. Comment on your results.
- 8. Write down the perturbation operator corresponding to Zeeman effect in many electron atom and hence obtain the first order correction to energy. Give a schematic diagram with appropriate term symbols for 1s → 2p transition in Hatom (i) in the absence, (ii) in the presence of an external magnetic field.

#### (Organic Special)

Answer any five questions, taking at least two from each group.

#### Group-A

- (a) Define Norrish type 1 reaction and explain the cleavage reaction with example along with the mechanism.
  - (b) (i) Predict the products of the following reaction giving proper explaination in each case :  $3+2\times2\frac{1}{2}$

$$\begin{array}{c}
 & hv \\
 & \downarrow hv / sensitizer \\
 & CH_3 COCH_3
\end{array}$$
[?]

(ii) 
$$CH_3 \xrightarrow{hv} [?]$$

- 2. (a) What are the minimum conditions for occuring Norrish type II Cleavage reaction? Explain the mechanism with reference to an example.
  - (b) Predict the products of the reactions:

(i) 
$$CH_3$$
 O  $CH_2CH_3$   $h\nu$  [?]

(ii)

$$CH_3$$
 $Av$ 
 $CH_3$ 
 $Av$ 
 $Av$ 

2

## 3. (a) Predict the products of the following reaction indicating mechanism in each case:

(i) 
$$CH_3$$
  $CH_3$   $CH_3$   $COOCH_3$   $COOCH_3$ 

(ii) 
$$\frac{hv}{cyclohexane}$$
 [?]

(iii) 
$$2 \xrightarrow{hv} \frac{hv}{Benzene}$$
?
$$\downarrow hv/methanol$$
[?]

### 4. (a) The following reaction gives the products as follows:

PhCOPh + 
$$(CH_3)_2$$
 CHOH  $\xrightarrow{hv}$  Ph Ph | Ph | C - C - Ph +  $CH_3$  COCH OH OH

3

The quantum yield for the reaction was investigated nearly as,  $\phi = 1$ . Establish this observation showing mechanism of the reaction.

- (b) Mischler's Ketone does not undergo photo reduction under the same condition at which benzophenone absorbs. Explain with proper reasoning.
- (c) Predict the products of the following reaction

PhCOCH<sub>3</sub> + Cis/transbutene 
$$\xrightarrow{hv}$$
? 3+3+2

5. Predict the products of the following reaction with proper explanation:





(iii) 
$$+ \frac{hv}{-40^{\circ}\text{C}}$$
?  $3+2+3$ 

#### Group-B

- (a) Write the names with chemical formula of different types
  of natural penicillin isolated from the fungus, genus penicillium.
  - (b) The following compound (A) on hydrolysis yields to product as:

$$C_9H_{11}N_2O_4SR \xrightarrow{\text{hot dil. HCl}} C_5H_{11}NO_2S + C_3H_4NO_2R + CO_2$$
(A) (B) (C)

Identify (B) and (C) and establish their structures.

3+3+2

7. (a) Penicillin undergoes the conversion as follows:

$$\begin{array}{c} C_9H_{11}N_2O_4SR \xrightarrow{\mbox{ dil.NaOH}} \left[ C_9H_{13}N_2O_5SR \right] \\ (\mbox{Penicillin}) & (\mbox{$\underline{D}$}) \downarrow \Delta \mbox{ (Heating)} - CO_2 \\ \\ Draw backwards and write \\ the possible structures of Penicillin. & \left[ C_8H_{13}N_2O_3SR \right] \\ (\mbox{$\underline{E}$}) \downarrow \mbox{aq. HgCl}_2 \\ C_5H_{11}NO_2S + C_3H_4NO_2R \\ (\mbox{$\underline{F}$}) & (\mbox{$\underline{G}$}) \end{array}$$

- (b) Establish the exact structure of penicillin from IR spectroscopic evidences. 3+5
- 8. Write all the synthetic steps for the synthesis of phenoxy methyl penicillin starting from phthalinide as applied by Sheehan et. al. Indicate the synthetic methodologies where applicable.

#### (Inorganic Special)

Answer any four questions.

- 1. (a) In a Carbonyl complex having linear (OC) M (CO) group, indicate how  $\nu_{CO}$  will change when
  - (i) One CO is replaced by Et<sub>3</sub>N
  - (ii) a positive charge is placed on the complex.

- (iii) a negative charge is placed on the complex.
- (b) Predict [A] to [D]. 4



(c) Cite the products of the following reaction:

(i) 
$$Cr(CO)_6 \xrightarrow{CH_3CN} ? \xrightarrow{Cycloheptatriene} ?$$

(ii) 
$$Fe(CO)_5 + Na^+ [(MeO)_3 BH] \longrightarrow ?$$

 (a) "Removal of all CO ligands is rarely possible"— Justify or Criticize.

3

(b) Complete the following reaction:



(c) In  $L_nM$  – CO complexes, if CO gets coordinated to a Lewis acid (A) and becomes  $L_nMCO$  – A.

What will nappen to its  $\nu_{CO}$  value?  $[L_n = \text{non } \pi \text{-acid ligand}]$ . Justify your answer.

- (d) Write down the complete reaction when Chromium hexacarbonyl is treated with sodium borohydride. 2
- (a) Deduce the expression for volume susceptibility of diamagnetism.
  - (b) Write a short note on natural types of supramolecular interactions.
- 4. (a) What is the structure of the cluster core of Os<sub>6</sub>(CO)<sub>18</sub>? Upon adding two electrons, what will be the change in the geometery of the cluster core? Explain on the basis of Wade's rule.

- (b) How will you synthesize  $[Fe_4(CO)_{13}]^{2-}$  starting from  $Fe(CO)_5$ ? Discuss the structure of this tetrametallic cluster compound.
- (c) Write down the synthesis procedure of synthesizing  $CO_4(CO)_{12}$  and  $Ir_4(CO)_{12}$ . Discuss the structure.
- (a) Elucidate and draw the geometry of the metal core structure for the following clusters.
  - (i)  $\left[ Co_6 (CO)_{15} \right]^{2-}$

(ii) 
$$\left[ Os_7 \left( CO \right)_{21} \right]$$
 4

- (b) Os<sub>5</sub>(CO)<sub>18</sub> has metal framework consisting of three edge sharing triangles (raft structure). Show that the valence electron count for this raft is consistent with the number of electrons available.
- (c) Predict the geometry of the following metal clusters based on total valence electron count 3
  - (i)  $Co_3(CO)_9 (\mu_3 CCI)$
  - (ii) HRu6 (CO)17B
  - (iii)  $Co_3(CO)_9Ni(\eta^5 Cp)$
- 6. (a) What do you mean by Neel and Curie temperature?

  Discuss the significance of Neel and Curic temperature.

- (b) What do you mean by "multiplet width"? Establish the magnetic moment equation for a system having large multiplet width compared to kT.
  2+4
- 7. (a)  $N_2$  and CO are iso-electronic molecules but  $M-N_2$  Complexes are much weaker compared to M-CO complexes. Offer reasonable explanations.
  - (b) What happens to  $v_{CO}$  when CO gets coordinated to BH<sub>3</sub> or Ni(CO)<sub>3</sub>?
  - (c) Among the given two complexes (A) and (B), which will show a lower carbonyl stretching frequency? Give reasons for your answer.

$$\begin{bmatrix} Cp & Cl \\ Cp & CO \end{bmatrix}^{\dagger} & Cp & CO \\ Cp & CO & Cp & CO \\ (A) & (B) &$$

(d) Which of the given complexes (A) and (B) will undergo ligand substitution faster with PPh<sub>3</sub>? Why?

(A) 
$$V(CO)_6$$
 (B)  $[V(CO)_6]^ 2\frac{1}{2} \times 4$