Total Pages-4

ŧ

C/16/M.Sc./4th Seme./MTM-401

2016

M.Sc. 4th Seme. Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-401

Full Marks : 50

Time : 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Functional Analysis)

Answer Q. No. 1 and any four from Q. No. 2 to Q. No. 6.

Symbols have their usual meanings.

1. Answer any four questions :

- 4×2
- (a) Let F and G be subspaces of a Hilbert Space H. Show that $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.
- (b) For $y \in l^{\infty}$, define $f_y(x) = \sum_{j=1}^{\infty} x(j) y(j)$, $x \in l^1$. Show that

 $\mathbf{f}_{\mathbf{y}} = \mathbf{y}_{\infty}$.

(Turn Over)

- (c) Check whether C¹[0,1] with the supremum norm is a Banach space.
- (d) If in an inner product space X, $x_n \to x$, $y_n \to y$, then show that $\langle x_n, y_n \rangle \to \langle x, y \rangle$.
- (e) Define the following with examples : Unitary operators, Strictly positive operators.
- (f) Let X be a complete normed linear space & $u: X \longrightarrow \mathbb{R}$ be a real linear functional. If f(x) = u(x) - iu(ix), $x \in X$, then, for α , $\beta \in \mathbb{R}$, show that $f((\alpha + i\beta)x) = (\alpha + i\beta)f(x)$, $x \in X$.
- 2. (a) Let X be a normed linear space and X₀ be a closed subspace of X. If x ∈ X, then show that x ∉ X₀ if and only if there exists a non-zero linear functional \$\phi ∈ X^*\$ such that \$\phi(x) ≠ 0\$ and \$\phi(y) = 0\$ for all y ∈ X₀. (X* denotes the dual of X).
 - (b) Let L be a closed linear subspace of NLS X, prove that ||X + L|| = inf {||x + y|| : y ∈ L} for all x ∈ X is a norm function on the quotient space X / L.

C/16/M.Sc./4th Seme./MTM-401

(Continued)

- 3. (a) State the open Mapping theorem. Let $X = C^{1}[0,1]$ equipped with the norm $\|\mathbf{x}\| = \|\mathbf{x}\|_{\infty} + \|\mathbf{x}'\|_{\infty}$ and Y = C[0, 1]equipped with the supremum norm $\|\mathbf{x}\|_{\infty}$. Check whether the linear operator $F: X \to Y$ defined by $F(\mathbf{x}) = x$ is continuous. Is F an open map?
 - (b) Let X and Y be Banach spaces over same scalars and T:X → Y be a linear operator. Define the graph G (T) of T and prove that G (T) is a subspace of X×X. 5+3
- 4. (a) Let X and Y be two Banach spaces and $T \in B(X, Y)$ be bijective. Prove that there exists $S \in B(Y, X)$ such that $ST = I_X$ and $TS = I_Y$.
 - (b) Assume that $\{U_{\alpha}\}_{\alpha \in I}$ is an orthonormal set in the inner product space X and $x \in X$. If $E_x = \{U_{\alpha}: \langle x, U_{\alpha} \rangle \neq 0\}$, then show that E_x is a countable set. 4+4
- 5. (a) Let H be a Hilbert space and Y be an inner product space. If T ∈ BL(H,Y). Then define the adjoint of T ie, T*. Also, give an example to show that if H is simply an inner product space, then T ∈ BL(H,Y) may not have an adjoint.

C/16/M.Sc./4th Seme./MTM-401

(Turn Over)

(b) Let $T \in BL(H)$ be normal, where H is a Hilbert space.

Show that if $Tx = \alpha x$ for some $x \in H$, then $T^*x = \overline{\alpha} x$ where α is a scalar. 1+4+3

- **6.** (a) Let H be a complex Hilbert space and B be the space of all bounded linear operators $T:H \rightarrow H$. Prove that the following statements are equivalent
 - (i) $T^*T = I$ (Identity operator),
 - (ii) $(T_x, T_y) = (x, y)$ for all $x, y \in H$,
 - (iii) $\|T_{\mathbf{x}}\| = \|\mathbf{x}\|$.. for all $\mathbf{x} \in \mathbf{H}$.
 - (b) Let $T_n (n \ge 1)$, $T \in BL(X, Y)$ where X and Y are normed linear spaces. Then, define the weak and strong convergence of the sequence of operators $\{T_n\}_{n\ge 1}$ to T.
 - (c) Let X be a finite dimensional inner product space and $\{x_n\}_{n\geq 1}$ be a sequence in X. Then show that $x_n \longrightarrow x$ if and only if $x_n \xrightarrow{\omega} x$. 4+2+2

[Internal Assesment : 10 Marks]

C/16/M.Sc./4th Seme./MTM-401

TB-200